A057167 Term in Recamán's sequence A005132 where n appears for first time, or -1 if n never appears.
0, 1, 4, 2, 131, 129, 3, 5, 16, 14, 12, 10, 8, 6, 31, 29, 27, 25, 23, 99734, 7, 9, 11, 13, 15, 17, 64, 62, 60, 58, 56, 54, 52, 50, 48, 46, 44, 42, 40, 38, 111, 22, 20, 18, 28, 30, 32, 222, 220, 218, 216, 214, 212, 210, 208, 206, 204, 202, 200, 198, 196
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n=0..1642 (taking a(1355) from A064227)
- Nick Hobson, Python program for this sequence
- C. L. Mallows, Plot (jpeg) of first 10000 terms of A005132
- C. L. Mallows, Plot (postscript) of first 10000 terms of A005132
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, FORTRAN program for A005132, A057167, A064227, A064228
- Index entries for sequences related to Recamán's sequence
Programs
-
Maple
w := array(1..10000); for j from 1 to 100 do l := 0; for k from 1 to nops(a) do if a[k] = j then l := k; exit; fi; od: w[j] := l; od: s := [seq(w[j],j=1..100)]; # where a is an array formed from sequence A005132
-
Mathematica
A005132 = {0}; Do[If[(r = Last[A005132] - n) <= 0 || MemberQ[ A005132, r], r = r + 2n]; AppendTo[ A005132, r], {n, 1, 10^5}]; a[n_] := If[p = Position[ A005132, n]; p == {}, 0, p[[1, 1]] - 1]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 18 2012 *)
-
PARI
first(n) = my(a=vector(n), r=[0]); while(#Set(a)
Iain Fox, Jul 11 2022 -
Python
from itertools import count, islice def agen(): # generator of terms an, A005132set, inv, y = 0, {0}, {0: 0}, 0 for n in count(1): t = an - n an = t if t >= 0 and t not in A005132set else an + n A005132set.add(an) inv[an] = n while y in inv: yield inv[y]; y += 1 print(list(islice(agen(), 61))) # Michael S. Branicky, Jul 12 2022
Extensions
a(0)=0 added and escape clause value changed to -1 by N. J. A. Sloane, May 01 2020
Comments