cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319232 Decimal expansion of Sum_{p = prime} 1/(p*log p)^2.

Original entry on oeis.org

6, 3, 7, 0, 5, 6, 1, 8, 4, 0, 7, 4, 6, 7, 6, 4, 3, 3, 0, 5, 9, 9, 6, 8, 5, 8, 5, 0, 4, 7, 8, 5, 2, 7, 6, 9, 4, 5, 7, 9, 8, 9, 6, 0, 7, 7, 1, 9, 9, 5, 3, 3, 6, 7, 0, 9, 6, 0, 1, 3, 7, 1, 0, 7, 5, 5, 8, 8, 3, 1, 6, 0, 4, 3, 3, 2, 7, 1, 5, 1, 6, 8, 3, 6, 7, 5, 3, 8, 3, 5, 9, 6, 6, 1, 3, 3, 1, 8, 1, 3, 1, 3, 8, 2, 7, 5
Offset: 0

Views

Author

R. J. Mathar, Sep 14 2018

Keywords

Comments

Obtained by expanding the formalism of arXiv:0811.4739 to double integrals over the Riemann zeta function.

Examples

			1/A016627^2 + 1/A016650^2 + 1/8.047189^2 + ... = 0.637056184074676....
		

Crossrefs

Programs

  • Mathematica
    digits = 106; precision = digits + 10;
    tmax = 500; (* integrand considered negligible beyond tmax *)
    kmax = 300; (* f(k) considered negligible beyond kmax *)
    InLogZeta[k_] := NIntegrate[(t - 2k) Log[Zeta[t]], {t, 2k, tmax}, WorkingPrecision -> precision, MaxRecursion -> 20, AccuracyGoal -> precision];
    f[k_] := With[{mu = MoebiusMu[k]}, If[mu == 0, 0, (mu/k^3)*InLogZeta[k]]];
    s = 0;
    Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}];
    RealDigits[s][[1]][[1 ;; digits]] (* Jean-François Alcover, Jun 21 2022, after Vaclav Kotesovec *)
  • PARI
    default(realprecision, 200); s=0; for(k=1, 300, s = s + moebius(k)/k^3 * intnum(x=2*k,[[1], 1], (x-2*k)*log(zeta(x))); print(s)); \\ Vaclav Kotesovec, Jun 12 2022

Extensions

More terms from Vaclav Kotesovec, Jun 12 2022