A319238 Positions of zeros in A114592, the list of coefficients in the expansion of Product_{n > 1} (1 - 1/n^s).
6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 144, 145, 146, 155, 158, 159, 160, 161, 166
Offset: 1
Keywords
Examples
16 = 2*8 = 4*4 = 2*2*4 = 2*2*2*2 has an equal number of even-length factorizations and odd-length factorizations into distinct factors (1). - _Tian Vlasic_, Dec 31 2021
Links
- Leonhard Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
- Leonhard Euler, De mirabilibus proprietatibus numerorum pentagonalium, par. 2.
- Eric Weisstein's World of Mathematics, Pentagonal Number Theorem
- Wikipedia, Pentagonal number theorem
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Join@@Position[Table[Sum[(-1)^Length[f],{f,Select[facs[n],UnsameQ@@#&]}],{n,100}],0]
Comments