cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319273 Signed sum over the prime multiplicities of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 1, 1, 0, 0, 4, 1, -1, 1, 1, 0, 0, 1, 2, 2, 0, 3, 1, 1, 1, 1, 5, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 1, 1, 1, 0, 1, 3, 2, -1, 0, 1, 1, -2, 0, 2, 0, 0, 1, 2, 1, 0, 1, 6, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, -1, 1, 0, 1, 1, 3, 4, 0, 1, 2, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 4, 1, -1, 1, 0, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Comments

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) = Sum (-1)^(i-1) y_i.

Examples

			The prime factorization of 810 is 2^1 * 3^4 * 5^1, so a(810) = 1 - 4 + 1 = -2.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[MapIndexed[(-1)^(#2[[1]]-1)*#1&,Last/@FactorInteger[n]]],{n,100}]
  • PARI
    A319273(n) = if(1==n, n, my(f=factor(n)); sum(i=1, #f~, f[i,2] * ((-1)^(i-1)))); \\ Antti Karttunen, Sep 30 2018

Extensions

More terms from Antti Karttunen, Sep 30 2018