A319302 Integers whose binary representation contains a consecutive string of zeros of prime length.
4, 8, 9, 12, 17, 18, 19, 20, 24, 25, 28, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 49, 50, 51, 52, 56, 57, 60, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 88, 89, 92, 96, 98, 99, 100, 101, 102, 103, 104, 105, 108, 113, 114, 115, 116, 120
Offset: 1
Examples
81 = (1010001)_2 is a term because it contains a run of zeros of length 3, and 3 is a prime. 16 = (10000)_2 is not a term because it contains only a run of 4 zeros and 4 is not a prime.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[120], AnyTrue[ Differences@ Flatten@ Position[ IntegerDigits[ 2*# + 1, 2], 1] - 1, PrimeQ] &] (* Giovanni Resta, Sep 17 2018 *)
-
PARI
is(n) = my(b=binary(n), i=0); for(k=1, #b, if(b[k]==0, i++); if(b[k]==1 || k==#b, if(ispseudoprime(i), return(1), i=0))); 0 \\ Felix Fröhlich, Sep 17 2018
-
Python
from re import split from sympy import isprime A319302_list, n = [], 1 while len(A319302_list) < 10000: for d in split('1+',bin(n)[2:]): if isprime(len(d)): A319302_list.append(n) break n += 1 # Chai Wah Wu, Oct 02 2018
Extensions
More terms from Giovanni Resta, Sep 17 2018