A319311 Number of ordered pairs (i,j) with 0 < i < j < prime(n)/2 such that (i^2 mod prime(n)) > (j^2 mod prime(n)).
0, 0, 1, 4, 3, 9, 14, 22, 28, 40, 53, 73, 86, 101, 116, 168, 153, 234, 260, 246, 299, 362, 365, 435, 523, 583, 612, 559, 652, 835, 952, 918, 1022, 1154, 1286, 1237, 1486, 1554, 1489, 1730, 1694, 1975, 1889, 2078, 2241, 2520, 2672, 2996, 2784, 2892, 3148, 3058, 3488, 3570, 4023, 3881, 4222, 4087, 4363
Offset: 2
Keywords
Examples
a(4) = 1 since prime(4) = 7, and (2,3) is the only ordered pair (i,j) with 0 < i < j < 7/2 and (i^2 mod 7) > (j^2 mod 7). a(5) = 4 since prime(5) = 11, and the only ordered pairs (i,j) with 0 < i < j < 11/2 and (i^2 mod 11) > (j^2 mod 11) are (2,5), (3,4), (3,5) and (4,5).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..2500
- Zhi-Wei Sun, Quadratic residues and related permutations, arXiv:1809.07766 [math.NT], 2018.
Programs
-
Mathematica
s[p_]:=s[p]=Sum[Boole[Mod[i^2,p]>Mod[j^2,p]],{j,2,(p-1)/2},{i,1,j-1}]; Table[s[Prime[n]],{n,2,60}]
-
PARI
a(n) = my(p=prime(n), c=0); for(j=2, p/2, for(i=1, j-1, if((i^2%p) > (j^2%p), c++))); c \\ Felix Fröhlich, Oct 04 2018
Comments