cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319327 Heinz numbers of integer partitions such that every distinct submultiset has a different LCM.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

Note that such a Heinz number is necessarily squarefree, as such a partition is necessarily strict.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
First differs from A304713 (Heinz numbers of pairwise indivisible partitions) at A304713(642) = 2093, which is absent from this sequence because its prime indices are {4,6,9} and LCM(4,9) = LCM(4,6,9) = 36.

Examples

			The sequence of partitions whose Heinz numbers are in the sequence begins: (), (1), (2), (3), (4), (5), (6), (3,2), (7), (8), (9), (10), (11), (5,2), (4,3), (12), (13), (14), (15), (7,2).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@LCM@@@Union[Subsets[primeMS[#]]]&]