cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319329 Heinz numbers of integer partitions, whose length is equal to the GCD of the parts and whose sum is equal to the LCM of the parts, in increasing order.

Original entry on oeis.org

2, 1495, 179417, 231133, 727531, 1378583, 1787387, 3744103, 4556993, 7566167, 18977519, 29629391, 30870587, 34174939, 39973571, 53508983, 70946617, 110779141, 138820187, 139681069, 170583017, 225817751, 409219217, 441317981, 493580417, 539462099, 544392433, 712797613, 802903541
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The corresponding sequence of partitions, whose length is equal to their GCD and whose sum is equal to their LCM: (1), (9,6,3), (20,8,8,4), (24,16,4,4), (16,16,12,4).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,10000],With[{m=If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]},And[LCM@@m==Total[m],GCD@@m==Length[m]]]&]

Extensions

More terms from Max Alekseyev, Jul 25 2024