A319353 Filter sequence combining weights of partitions with Heinz-numbers equal to the proper divisors of n.
1, 2, 2, 3, 2, 4, 2, 4, 5, 6, 2, 7, 2, 8, 9, 10, 2, 11, 2, 11, 12, 13, 2, 14, 15, 16, 12, 17, 2, 18, 2, 11, 19, 20, 21, 22, 2, 23, 24, 18, 2, 25, 2, 26, 27, 28, 2, 29, 30, 31, 32, 33, 2, 25, 34, 25, 35, 36, 2, 37, 2, 38, 39, 40, 41, 42, 2, 43, 44, 45, 2, 37, 2, 46, 47, 48, 49, 50, 2, 51, 52, 53, 2, 54, 55, 56, 57, 42, 2, 58, 59, 60, 61, 62, 63, 37, 2, 64, 65
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); } A319352(n) = { my(m=1); fordiv(n, d, if(d
A056239(d)))); (m); }; v319353 = rgs_transform(vector(up_to,n,A319352(n))); A319353(n) = v319353[n];
Comments