A319357 Filter sequence combining A003415(d) from all proper divisors d of n, where A003415(d) = arithmetic derivative of d.
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 8, 2, 9, 4, 4, 2, 10, 3, 4, 11, 12, 2, 13, 2, 14, 4, 4, 4, 15, 2, 4, 4, 16, 2, 17, 2, 18, 19, 4, 2, 20, 3, 21, 4, 22, 2, 23, 4, 24, 4, 4, 2, 25, 2, 4, 26, 27, 4, 28, 2, 29, 4, 30, 2, 31, 2, 4, 32, 33, 4, 34, 2, 35, 36, 4, 2, 37, 4, 4, 4, 38, 2, 39, 4, 40, 4, 4, 4, 41, 2, 42, 43, 44, 2, 45, 2, 46, 47
Offset: 1
Keywords
Examples
Proper divisors of 1445 are [1, 5, 17, 85, 289], while the proper divisors of 2783 are [1, 11, 23, 121, 253]. 1 contributes 0 and primes contribute 1, so only the last two matter in each set. We have A003415(85) = 22 = A003415(121) and A003415(289) = 34 = A003415(253), thus the value of arithmetic derivative coincides for all proper divisors, thus a(1445) = a(2783).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 A319356(n) = { my(m=1); fordiv(n, d, if(d
A003415(d)))); (m); }; v319357 = rgs_transform(vector(up_to,n,A319356(n))); A319357(n) = v319357[n];
Comments