A319395 Number of partitions of n into exactly two positive Fibonacci numbers.
0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 1, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..17711
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, `if`((t-> issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1))) end: b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1))) end: a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(2): seq(a(n), n=0..120);
-
Mathematica
h[n_] := h[n] = If[n < 1, 0, If[Function[t, IntegerQ@Sqrt[t + 4] || IntegerQ@Sqrt[t - 4]][5 n^2], n, h[n - 1]]]; b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1 || t < 1, 0, b[n, h[i - 1], t] + b[n - i, h[Min[n - i, i]], t - 1]]]; a[n_] := With[{k = 2}, b[n, h[n], k] - b[n, h[n], k - 1]]; a /@ Range[0, 120] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Formula
a(n) = [x^n y^2] 1/Product_{j>=2} (1-y*x^A000045(j)).