A319396 Number of partitions of n into exactly three positive Fibonacci numbers.
0, 0, 0, 1, 1, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 3, 3, 1, 2, 1, 3, 3, 2, 2, 3, 2, 3, 1, 3, 1, 0, 2, 1, 2, 3, 2, 3, 2, 1, 2, 2, 3, 2, 0, 3, 1, 1, 3, 0, 1, 0, 0, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 2, 1, 0, 2, 2, 2, 3, 0, 2, 0, 0, 3, 1, 1, 1, 0, 3, 0, 0, 1, 0, 0
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..17711
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, `if`((t-> issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1))) end: b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1))) end: a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(3): seq(a(n), n=0..120);
-
Mathematica
h[n_] := h[n] = If[n < 1, 0, If[Function[t, IntegerQ@Sqrt[t + 4] || IntegerQ@Sqrt[t - 4]][5 n^2], n, h[n - 1]]]; b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1 || t < 1, 0, b[n, h[i - 1], t] + b[n - i, h[Min[n - i, i]], t - 1]]]; a[n_] := With[{k = 3}, b[n, h[n], k] - b[n, h[n], k - 1]]; a /@ Range[0, 120] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Formula
a(n) = [x^n y^3] 1/Product_{j>=2} (1-y*x^A000045(j)).