A319397 Number of partitions of n into exactly four positive Fibonacci numbers.
0, 0, 0, 0, 1, 1, 2, 2, 4, 3, 4, 4, 5, 4, 5, 4, 5, 5, 5, 5, 7, 4, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 7, 4, 4, 3, 5, 5, 4, 6, 6, 5, 6, 4, 6, 6, 5, 5, 5, 5, 5, 4, 7, 4, 1, 4, 2, 4, 6, 3, 6, 5, 5, 6, 5, 6, 5, 3, 6, 3, 5, 6, 5, 6, 5, 2, 5, 3, 6, 5, 2, 5, 4, 3, 7, 1, 4
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..17711
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, `if`((t-> issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1))) end: b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1))) end: a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(4): seq(a(n), n=0..120);
-
Mathematica
h[n_] := h[n] = If[n < 1, 0, If[Function[t, IntegerQ@Sqrt[t + 4] || IntegerQ@Sqrt[t - 4]][5 n^2], n, h[n - 1]]]; b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1 || t < 1, 0, b[n, h[i - 1], t] + b[n - i, h[Min[n - i, i]], t - 1]]]; a[n_] := With[{k = 4}, b[n, h[n], k] - b[n, h[n], k - 1]]; a /@ Range[0, 120] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
Formula
a(n) = [x^n y^4] 1/Product_{j>=2} (1-y*x^A000045(j)).