A319400 Number of partitions of n into exactly seven positive Fibonacci numbers.
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 9, 9, 11, 11, 14, 14, 16, 15, 19, 17, 20, 20, 22, 21, 24, 22, 27, 25, 27, 26, 31, 28, 30, 29, 32, 29, 32, 30, 34, 33, 34, 34, 37, 36, 38, 36, 41, 37, 38, 39, 41, 41, 40, 39, 41, 38, 41, 38, 41, 42, 40, 41, 46, 43
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..17711
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, `if`((t-> issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1))) end: b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1))) end: a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(7): seq(a(n), n=0..120);
Formula
a(n) = [x^n y^7] 1/Product_{j>=2} (1-y*x^A000045(j)).