A319401 Number of partitions of n into exactly eight positive Fibonacci numbers.
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 10, 12, 13, 16, 16, 20, 19, 23, 22, 25, 25, 30, 28, 31, 31, 35, 34, 39, 36, 42, 40, 43, 42, 47, 44, 47, 46, 51, 48, 52, 51, 56, 55, 57, 56, 62, 59, 62, 60, 65, 64, 64, 65, 67, 64, 67, 65, 70, 67, 69, 68, 72
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..17711
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, `if`((t-> issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1))) end: b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1))) end: a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(8): seq(a(n), n=0..120);
Formula
a(n) = [x^n y^8] 1/Product_{j>=2} (1-y*x^A000045(j)).