cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319421 Triangle read by rows: T(n,k) (1 <= k <= n) = one-half of the number of binary vectors of length n and cuts-resistance k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 6, 2, 1, 1, 10, 11, 7, 2, 1, 1, 14, 24, 14, 8, 2, 1, 1, 22, 42, 35, 16, 9, 2, 1, 1, 30, 81, 68, 45, 18, 10, 2, 1, 1, 46, 138, 149, 89, 55, 20, 11, 2, 1, 1, 62, 250, 282, 216, 110, 66, 22, 12, 2, 1, 1, 94, 419, 577, 422, 285, 132, 78, 24, 13, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2018

Keywords

Comments

Cuts-resistance is defined in A319416.
This triangle summarizes the data shown in A319420.
Conjecture (Sloane): Sum_{i = 1..n} i * T(n,i) = A189391(n).

Examples

			Triangle begins:
   1
   1   1
   1   2   1
   1   4   2   1
   1   6   6   2   1
   1  10  11   7   2   1
   1  14  24  14   8   2   1
   1  22  42  35  16   9   2   1
   1  30  81  68  45  18  10   2   1
   1  46 138 149  89  55  20  11   2   1
   1  62 250 282 216 110  66  22  12   2   1
   1  94 419 577 422 285 132  78  24  13   2   1
Lenormand gives first 15 rows.
For example, the "1,2,1" row here refers to the 8 vectors of length 3. There are 2 vectors of cuts-resistance 1, namely 010 and 101 (see A319416), 4 vectors of cuts-resistance 2 (100,011,001,110), and 2 of cuts-resistance 3 (000 and 111). Halving these counts we get 1,2,1
		

Crossrefs

Row sums are A000079.
Column k = 2 appears to be A027383.
The version for runs-resistance is A319411 or A329767.
The version for compositions is A329861.
The cuts-resistance of the binary expansion of n is A319416(n).

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[Length[Select[Tuples[{0,1},n],First[#]==1&°dep[#]==k&]],{n,8},{k,n}] (* Gus Wiseman, Nov 25 2019 *)

Formula

T(n,k) = A329860(n,k)/2. - Gus Wiseman, Nov 25 2019