A319430 First differences of the tribonacci representation numbers (A003726 or A278038).
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5
Offset: 0
Keywords
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..50000 (first 9999 terms from N. J. A. Sloane)
Programs
-
Mathematica
Differences@ Select[Range[0, 160], SequenceCount[IntegerDigits[#, 2], {1, 1, 1}] == 0 &] (* Michael De Vlieger, Dec 23 2019 *)
Formula
Conjecture: All terms are of the form ceiling(2^k/7) for some k (cf. A046630), and all numbers of the form ceiling(2^k/7) occur.
Conjecture (continued): Furthermore, new values of ceiling(2^k/7) (that is, new records) appear at n = 0, 6,12, 23, 43, 80, 148, 273, ..., which (apart from the start) are the tribonacci numbers minus 1, A000073 - 1, or A089068.
a(n) = ceiling(2^i/7) iff the Tribonacci representation of n+1 ends in i 0's. - Jeffrey Shallit, Oct 02 2018
Comments