A319443 Number of distinct Eisenstein primes in the factorization of n.
0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 3, 2, 1, 1, 2, 2, 2, 3, 2, 1, 2, 1, 3, 1, 3, 1, 3, 2, 1, 2, 2, 3, 2, 2, 3, 3, 2, 1, 4, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 3, 2, 1, 3, 2, 3, 3, 1, 3, 3, 2, 2, 2, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 2, 1, 2, 1, 4, 2, 3, 2
Offset: 1
Keywords
Examples
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2. Over the Gaussian integers, 5187 = 3*7*13*19 is factored as w'*(1 + w)^2*(2 + w)*(2 + w')*(3 + w)*(3 + w')*(3 + 2w)*(3 + 2w'), the distinct Eisenstein prime factors are 1 + w, 2 + w, 2 + w', 3 + w, 3 + w', 3 + 2w and 3 + 2w', so a(5187) = 7. Over the Gaussian integers, 1006655265000 = 2^3*3^2*5^4*7^5*11^3 is factored as w'^2*(1 + w)^4*2^3*(2 + w)*(2 + w')*5^4*11^3, the distinct Eisenstein prime factors are 1 + w, 2, 2 + w, 2 + w', 5 and 11, so a(1006655265000) = 6.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Wikipedia, Eisenstein integer
Crossrefs
Cf. A121940.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), this sequence ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A086275.
Programs
-
Mathematica
f[p_, e_] := If[Mod[p, 3] == 1, 2, 1]; eisOmega[1] = 0; eisOmega[n_] := Plus @@ f @@@ FactorInteger[n]; Array[eisOmega, 100] (* Amiram Eldar, Feb 10 2020 *)
-
PARI
a(n)=my(f=factor(n)[, 1]); sum(i=1, #f, if(f[i]%3==1, 2, 1))
Formula
Additive with a(p^e) = 2 if p == 1 (mod 3), 1 otherwise.
Comments