cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319446 Exponent of the group of the Eisenstein integers in a reduced system modulo n.

Original entry on oeis.org

1, 3, 6, 6, 24, 6, 6, 12, 6, 24, 120, 6, 12, 6, 24, 24, 288, 6, 18, 24, 6, 120, 528, 12, 120, 12, 18, 6, 840, 24, 30, 48, 120, 288, 24, 6, 36, 18, 12, 24, 1680, 6, 42, 120, 24, 528, 2208, 24, 42, 120, 288, 12, 2808, 18, 120, 12, 18, 840, 3480, 24, 60
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Equivalent of psi (A002322) in the ring of Eisenstein integers.
a(n) is the exponent of the multiplicative group of Eisenstein integers modulo n, i.e., (Z[w]/nZ[w])* = {a + b*w : a, b in Z/nZ and gcd(a^2 + a*b + b^2, n) = 1} where w = (1 + sqrt(3)*i)/2. The number of elements in (Z[w]/nZ[w])* is A319445(n).
a(n) is the smallest e such that for any Eisenstein integer z coprime to n we have z^e == 1 (mod n).
By definition, A319445(n)/a(n) is always an integer, and is 1 iff (Z[w]/nZ[w])* is cyclic, that is, rank((Z[w]/nZ[w])*) = A319447(n) = 0 or 1, and n has a primitive root in (Z[w]/nZ[w])*. A319445(n)/a(n) = 1 iff n = 1, 3 or a prime congruent to 2 mod 3.
For n > 2, a(n) is divisible by 6.

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
Let G = (Z[w]/4Z[w])* = {1, w, 1 + w, w', 1 + w', -1 + 2w, -1, -w, -1 - w, -w', -1 - w', -1 + 2w'}. The possibilities for the exponent of G are 12, 6, 4, 3, 2 and 1. G^6 = {x^6 mod 4 : x belongs to G} = {1} and w^3 !== 1 (mod 4), w^4 !== 1 (mod 4). Therefore, the exponent of G is greater than 4, accordingly the exponent of G is 6 and a(4) = 6.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), this sequence ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A227334.

Programs

  • Mathematica
    f[p_, e_] := If[p == 3 , If[e == 1, 6, 2*3^(e - 1)], Switch[Mod[p, 3], 1, (p - 1)*p^(e - 1), 2, (p^2 - 1)*p^(e - 1)]]; eisPsi[1] = 1; eisPsi[n_] := LCM @@ f @@@ FactorInteger[n]; Array[eisPsi, 100]  (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==3, r=lcm(r,2*3^max(e-1,1)));
            if(p%3==1, r=lcm(r,(p-1)*p^(e-1)));
            if(p%3==2, r=lcm(r,(p^2-1)*p^(e-1)));
        );
        return(r);
    }

Formula

a(3) = 6, a(3^e) = 2*3^(e-1) for e >= 2; a(p^e) = (p - 1)*p^(e-1) if p == 1 (mod 3) and (p^2 - 1)*p^(e-1) if p == 2 (mod 3). If gcd(m, n) = 1 then a(mn) = lcm(a(m), a(n)). [See the group structure of (Z[w]/(pi^e)Z[w])* in A319447, where pi is a prime element in Z[w]. - Jianing Song, Oct 03 2022]

Extensions

Corrected by Jianing Song, Jan 12 2019