cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A319442 Number of divisors of n over the Eisenstein integers.

Original entry on oeis.org

1, 2, 3, 3, 2, 6, 4, 4, 5, 4, 2, 9, 4, 8, 6, 5, 2, 10, 4, 6, 12, 4, 2, 12, 3, 8, 7, 12, 2, 12, 4, 6, 6, 4, 8, 15, 4, 8, 12, 8, 2, 24, 4, 6, 10, 4, 2, 15, 9, 6, 6, 12, 2, 14, 4, 16, 12, 4, 2, 18, 4, 8, 20, 7, 8, 12, 4, 6, 6, 16, 2, 20, 4, 8, 9, 12, 8, 24, 4, 10
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Equivalent of d (A000005) in the ring of Eisenstein integers.
Divisors which are associates are identified (two Eisenstein integers z1, z2 are associates if z1 = u * z2 where u is an Eisenstein unit, i.e., one of +-1 or (+-1 +- sqrt(3)*i)/2).

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
Divisors of 7 over the Eisenstein integers are 1, 2 + w, 2 + w', 7 and their association, so a(7) = 4.
Divisors of 9 over the Eisenstein integers are 1, 1 + w, 3, 3 + 3w, 9 and their association, so a(9) = 5.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): this sequence ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A062327.

Programs

  • Maple
    A319442 := proc(n) local t, f, j, e, m; t := 1: f := ifactors(n)[2];
       for j from 1 to nops(f) do
          e := f[j, 2] + 1; m := f[j, 1] mod 3;
          if   m = 0 then 2*e-1
          elif m = 1 then e^2
          else e fi;
          t := t * % od;
    t end: seq(A319442(n), n=1..80); # Peter Luschny, Oct 03 2018
  • Mathematica
    f[p_, e_] := Switch[Mod[p, 3], 0, 2*e + 1, 1, (e + 1)^2, 2, e + 1]; eisNumDiv[1] = 1; eisNumDiv[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisNumDiv, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    A319442(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==3, r*=(2*e+1));
            if(p%3==1, r*=(e+1)^2);
            if(p%3==2, r*=(e+1));
        );
        return(r);
    }

Formula

Multiplicative with a(3^e) = 2*e + 1, a(p^e) = (e + 1)^2 if p == 1 (mod 3) and e + 1 if p == 2 (mod 3).

A319445 Number of Eisenstein integers in a reduced system modulo n.

Original entry on oeis.org

1, 3, 6, 12, 24, 18, 36, 48, 54, 72, 120, 72, 144, 108, 144, 192, 288, 162, 324, 288, 216, 360, 528, 288, 600, 432, 486, 432, 840, 432, 900, 768, 720, 864, 864, 648, 1296, 972, 864, 1152, 1680, 648, 1764, 1440, 1296, 1584, 2208, 1152, 1764, 1800, 1728, 1728, 2808
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Equivalent of phi (A000010) in the ring of Eisenstein integers.
Number of units in the ring Z[w]/nZ[w], where Z[w] is the ring of Eisenstein integers.
a(n) is the number of elements in G(n) = {a + b*w: a, b in Z/nZ and gcd(a^2 + a*b + b^2, n) = 1} where w = (1 + sqrt(3)*i)/2.
a(n) is the number of ordered pairs (a, b) modulo n such that gcd(a^2 + a*b + b^2, n) = 1.
For n > 2, a(n) is divisible by 6.

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
{1, w, w'} is the set of 3 units in the Eisenstein integers modulo 2, so a(2) = 3.
{1, w, w^2, -1, w', w'^2} is the set of 6 units in the Eisenstein integers modulo 3, so a(3) = 6.
{1, w, w'} is the set of 3 units in the Eisenstein integers modulo 2, so a(2) = 3.
{1, w, 1 + w, w', 1 + w', -1 + 2w, -1, -w, -1 - w, -w', -1 - w', -1 + 2w'} is the set of 12 units in the Eisenstein integers modulo 4, so a(4) = 12.
		

Crossrefs

Cf. A007434.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), this sequence ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A079458.

Programs

  • Mathematica
    f[p_, e_] := If[p == 3 , 2*3^(2*e - 1), Switch[Mod[p, 3], 1, (p - 1)^2*p^(2*e - 2), 2, (p^2 - 1)*p^(2*e - 2)]]; eisPhi[1] = 1; eisPhi[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisPhi, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==3, r*=2*3^(2*e-1));
            if(p%3==1, r*=(p-1)^2*p^(2*e-2));
            if(p%3==2, r*=(p^2-1)*p^(2*e-2));
        );
        return(r);
    }

Formula

Multiplicative with a(3^e) = 2*3^(2*e-1), a(p^e) = phi(p^e)^2 = (p-1)^2*p^(2*e-2) if p == 1 (mod 3) and J_2(p^e) = A007434(p^e) = (p^2 - 1)*p^(2*e-2) if p == 2 (mod 3).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (8/27) * Product_{p prime == 1 (mod 3)} (1 - 2/p^2 + 1/p^3) * Product_{p prime == 2 (mod 3)} (1 - 1/p^3) = 0.2410535987... . - Amiram Eldar, Feb 13 2024

A227334 Exponent of the group of the Gaussian integers in a reduced system modulo n.

Original entry on oeis.org

1, 2, 8, 4, 4, 8, 48, 4, 24, 4, 120, 8, 12, 48, 8, 8, 16, 24, 360, 4, 48, 120, 528, 8, 20, 12, 72, 48, 28, 8, 960, 16, 120, 16, 48, 24, 36, 360, 24, 4, 40, 48, 1848, 120, 24, 528, 2208, 8, 336, 20, 16, 12, 52, 72, 120, 48, 360, 28, 3480, 8, 60, 960, 48, 32
Offset: 1

Views

Author

Keywords

Comments

a(n) is the exponent of the multiplicative group of Gaussian integers modulo n, i.e., (Z[i]/nZ[i])* = {a + b*i: a, b in Z/nZ and gcd(a^2 + b^2, n) = 1}. The number of elements in (Z[i]/nZ[i])* is A079458(n).
For n > 2, a(n) is divisible by 4. - Jianing Song, Aug 29 2018
From Jianing Song, Sep 23 2018: (Start)
Equivalent of psi (A002322) in the ring of Gaussian integers.
a(n) is the smallest positive e such that for any Gaussian integer z coprime to n we have z^e == 1 (mod n).
By definition, A079458(n)/a(n) is always an integer, and is 1 iff (Z[i]/nZ[i])* is cyclic, that is, rank((Z[i]/nZ[i])*) = A316506(n) = 0 or 1, and n has a primitive root in (Z[i]/nZ[i])*. A079458(n)/a(n) = 1 iff n = 1, 2 or a prime congruent to 3 modulo 4. (End)

Examples

			Let G = (Z[i]/4Z[i])* = {i, 3i, 1, 1 + 2i, 2 + i, 2 + 3i, 3, 3 + 2i}. The possibilities for the exponent of G are 8, 4, 2 and 1. G^4 = {x^4 mod 4 : x belongs to G} = {1} and i^2 !== 1 (mod 4). Therefore, the exponent of G is greater than 2, accordingly the exponent of G is 4 and a(4) = 4.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), this sequence ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319446.

Programs

  • Mathematica
    fa = FactorInteger;lamas[1] = 1;lamas[p_, s_]:= Which[Mod[p, 4]==3,p^(s-1)(p^2 - 1), Mod[p, 4] == 1, p^(s - 1)(p - 1), s ≥ 4, 2^(s - 1), s > 1, 4, s == 1, 2]; lamas[n_] := {aux = 1; Do[aux = LCM[aux, lamas[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length@fa[n]}]; aux}[[1]]; Table[lamas[n], {n, 100}]
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2&&e<=2, r=lcm(r,2^e));
            if(p==2&&e>=3, r=lcm(r,2^(e-1)));
            if(p%4==1, r=lcm(r,(p-1)*p^(e-1)));
            if(p%4==3, r=lcm(r,(p^2-1)*p^(e-1)));
        );
        return(r);
    } \\ Jianing Song, Aug 29 2018

Formula

a(2^e) = 2^e if e <= 2 and 2^(e-1) if e >= 3, a(p^e) = (p - 1)*p^(e-1) if p == 1 (mod 4) and (p^2 - 1)*p^(e-1) if p == 3 (mod 4). If gcd(m, n) = 1 then a(mn) = lcm(a(m), a(n)). - Jianing Song, Aug 29 2018 [See the group structure of (Z[i]/(pi^e)Z[i])* in A316506, where pi is a prime element in Z[i]. - Jianing Song, Oct 03 2022]

A319443 Number of distinct Eisenstein primes in the factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 3, 2, 1, 1, 2, 2, 2, 3, 2, 1, 2, 1, 3, 1, 3, 1, 3, 2, 1, 2, 2, 3, 2, 2, 3, 3, 2, 1, 4, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 3, 2, 1, 3, 2, 3, 3, 1, 3, 3, 2, 2, 2, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 2, 1, 2, 1, 4, 2, 3, 2
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Equivalent of omega (A001221) in the ring of Eisenstein integers.
z is an Eisenstein prime iff z has prime norm or z is the product of a rational prime congruent to 2 modulo 3 and an Eisenstein unit (one of +-1 or (+-1 +- sqrt(3)*i)/2).
Associated Eisenstein prime divisors are counted only once.
Let s(n) be the smallest k with a(k) = n, then we have: s(0) = 1, s(1) = 2, s(2) = 6, s(2n-1) = 2*A121940(n-1), s(2n) = 6*A121940(n-1).

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
Over the Gaussian integers, 5187 = 3*7*13*19 is factored as w'*(1 + w)^2*(2 + w)*(2 + w')*(3 + w)*(3 + w')*(3 + 2w)*(3 + 2w'), the distinct Eisenstein prime factors are 1 + w, 2 + w, 2 + w', 3 + w, 3 + w', 3 + 2w and 3 + 2w', so a(5187) = 7.
Over the Gaussian integers, 1006655265000 = 2^3*3^2*5^4*7^5*11^3 is factored as w'^2*(1 + w)^4*2^3*(2 + w)*(2 + w')*5^4*11^3, the distinct Eisenstein prime factors are 1 + w, 2, 2 + w, 2 + w', 5 and 11, so a(1006655265000) = 6.
		

Crossrefs

Cf. A121940.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), this sequence ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A086275.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 3] == 1, 2, 1]; eisOmega[1] = 0; eisOmega[n_] := Plus @@ f @@@ FactorInteger[n]; Array[eisOmega, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=my(f=factor(n)[, 1]); sum(i=1, #f, if(f[i]%3==1, 2, 1))

Formula

Additive with a(p^e) = 2 if p == 1 (mod 3), 1 otherwise.

A319444 Total number of factors in a factorization of n into Eisenstein primes.

Original entry on oeis.org

0, 1, 2, 2, 1, 3, 2, 3, 4, 2, 1, 4, 2, 3, 3, 4, 1, 5, 2, 3, 4, 2, 1, 5, 2, 3, 6, 4, 1, 4, 2, 5, 3, 2, 3, 6, 2, 3, 4, 4, 1, 5, 2, 3, 5, 2, 1, 6, 4, 3, 3, 4, 1, 7, 2, 5, 4, 2, 1, 5, 2, 3, 6, 6, 3, 4, 2, 3, 3, 4, 1, 7, 2, 3, 4, 4, 3, 5, 2, 5, 8, 2, 1, 6, 2, 3, 3
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Equivalent of Omega (A001222) in the ring of Eisenstein integers.
z is an Eisenstein prime iff z has prime norm or z is the product of a rational prime congruent to 2 modulo 3 and an Eisenstein unit (one of +-1 or (+-1 +- sqrt(3)*i)/2).
The smallest k with a(k) = n is A038754(n).

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
a(54) = a(2*3^3) = 1*a(2) + 3*a(3) = 1*1 + 3*2 = 7. Over the Gaussian integers, 54 is factored as -2*(1 + w)^6.
a(63) = a(3^2*7) = 2*a(3) + 1*a(7) = 2*2 + 1*2 = 6. Over the Gaussian integers, 63 is factored as w'^2*(1 + w)^4*(2 + w)*(2 + w)'.
a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 3*a(2) + 2*a(3) + 4*a(5) + 5*a(7) + 3*a(11) = 3*1 + 2*2 + 4*1 + 5*2 + 3*1 = 24. Over the Gaussian integers, 1006655265000 is factored as w'^2*(1 + w)^4*2^3*(2 + w)*(2 + w')*5^4*11^3.
		

Crossrefs

Cf. A038754.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), this sequence ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A078458.

Programs

  • Mathematica
    f[p_, e_] := e * If[Mod[p, 3] == 2, 1, 2]; eisBigomega[1] = 0; eisBigomega[n_] := Plus @@ f @@@ FactorInteger[n]; Array[eisBigomega, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=my(f=factor(n)); sum(i=1, #f~, if(f[i, 1]%3==2, 1, 2)*f[i, 2])

Formula

Completely additive with a(p) = 2 if p = 3 or p == 1 (mod 3) and a(p) = 1 if p == 2 (mod 3).

A319448 Moebius function mu(n) defined for the Eisenstein integers.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Just like the original Moebius function over the integers, a(n) = 0 if n has a squared Eisenstein prime factor, otherwise (-1)^t if n is a product of an Eisenstein unit and t distinct Eisenstein prime factors.
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2. a(n) = 0 for n divisible by 3 since 3 = w'*(1 + w)^2 contains a squared factor. For rational primes p == 1 (mod 3), p is always factored as (x + y*w)(x + y*w'), x + y*w and x + y*w' are not associated so a(p) = (-1)*(-1) = 1.

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
a(14) = -1 because 14 is factored as 2*(2 + w)*(2 + w') with three distinct Eisenstein prime factors.
a(55) = (-1)*(-1) = 1 because 55 = 5*11 where 5 and 11 are congruent to 2 mod 3 (thus being Eisenstein primes).
		

Crossrefs

Cf. A102283.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), this sequence ("mu", A008683).
Equivalent in the ring of Gaussian integers: A318608.

Programs

  • Mathematica
    f[p_, e_] := If[p == 3 || e > 1, 0, Switch[Mod[p, 3], 1, 1, 2, -1]]; eisMu[1] = 1; eisMu[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisMu, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==3||e>=2, r=0);
            if(Mod(p, 3)==2&e==1, r*=-1);
        );
        return(r);
    }

Formula

a(n) = 0 if n is divisible by 3 or has a square prime factor, otherwise Product_{p divides n} (3 - 2*(p mod 3)) where the product is taken over the primes.
Multiplicative with a(p^e) = 0 if p = 3 or e > 1, a(p) = 1 if p == 1 (mod 3) and -1 if p == 2 (mod 3).
For squarefree n, a(n) = Legendre symbol (n, 3) = Kronecker symbol (-3, n) = A102283(n).

A319449 Sum of the norm of divisors of n over Eisenstein integers, with associated divisors counted only once.

Original entry on oeis.org

1, 5, 13, 21, 26, 65, 64, 85, 121, 130, 122, 273, 196, 320, 338, 341, 290, 605, 400, 546, 832, 610, 530, 1105, 651, 980, 1093, 1344, 842, 1690, 1024, 1365, 1586, 1450, 1664, 2541, 1444, 2000, 2548, 2210, 1682, 4160, 1936, 2562, 3146, 2650, 2210, 4433, 3249, 3255
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Equivalent of sigma (A000203) in the ring of Eisenstein integers. Note that only norms are summed up.

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2, and ||d|| denote the norm of d.
a(3) = ||1|| + ||1 + w|| + ||3|| = 1 + 3 + 9 = 13.
a(7) = ||1|| + ||2 + w|| + ||2 + w'|| + ||7|| = 1 + 7 + 7 + 49 = 64.
		

Crossrefs

Cf. A001157.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), this sequence ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A317797.

Programs

  • Mathematica
    f[p_, e_] := If[p == 3 , DivisorSigma[1, 3^(2*e)], Switch[Mod[p, 3], 1, DivisorSigma[1, p^e]^2, 2, DivisorSigma[2, p^e]]]; eisSigma[1] = 1; eisSigma[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisSigma, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==3, r*=((3^(2*e+1)-1)/2));
            if(Mod(p, 3)==1, r*=((p^(e+1)-1)/(p-1))^2);
            if(Mod(p, 3)==2, r*=(p^(2*e+2)-1)/(p^2-1));
        );
        return(r);
    }

Formula

Multiplicative with a(3^e) = sigma(3^(2e)) = (3^(2e+1) - 1)/2, a(p^e) = sigma(p^e)^2 = ((p^(e+1) - 1)/(p - 1))^2 if p == 1 (mod 3) and sigma_2(p^e) = A001157(p^e) = (p^(2e+2) - 1)/(p^2 - 1) if p == 2 (mod 3).

A319447 a(n) is the rank of the multiplicative group of Eisenstein integers modulo n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 4, 2, 3, 3, 2, 1, 4, 2, 3, 3, 4, 1, 3, 2, 3, 2, 2, 3, 4, 2, 3, 3, 4, 1, 4, 2, 3, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 5, 3, 2, 1, 4, 2, 3, 5, 3, 3, 3, 2, 3, 2, 4, 1, 4, 2, 3, 2, 4, 3, 4, 2, 4, 3, 2, 1, 5, 2, 3, 2
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

The rank of a finitely generated group rank(G) is defined to be the size of the minimal generating sets of G.
Let p be an odd prime and (Z[w]/nZ[w])* be the multiplicative group of Gaussian integers modulo n, then: (Z[w]/p^e*Z[w])* = (C_((p-1)*p^(e-1)))^2 if p == 1 (mod 6); C_(p^(e-1)) X C_(p^(e-1)*(p^2-1)) if p == 5 (mod 6); (Z[w]/3^e*Z[w])* = C_3 X C_(3^(e-1)) X C_(2*3^(e-1)); (Z[w]/2Z[w])* = C_3, (Z[w]/2^e*Z[w])* = C_2 X C_(2^(e-2)) X C_(3*2^(e-1)) for e >= 2. If n = Product_{i=1..k} (p_i)^(e_i), then (Z[w]/nZ[w])* = (Z[w]/(p_1)^(e_1)*Z[w])* X (Z[w]/(p_2)^(e_2)*Z[w])* X ... X (Z[w]/(p_k)^(e_k)*Z[w])*.
The order of (Z[w]/nZ[w])* is A319445(n) and the exponent of it is A319446(n).
{a(n)} is not additive: (Z[w]/2Z[w])* = C_3, (Z[w]/25Z[w])* = C_5 X C_120, so (Z[w]/50Z[w])* = C_15 X C_120, a(50) < a(2) + a(25).
A319445(n)/A319446(n) is always an integer, and is 1 if and only if (Z[w]/nZ[w])* is cyclic, that is, rank((Z[w]/nZ[w])*) = a(n) = 0 or 1, and n has a primitive root in (Z[w]/nZ[w])*. a(n) = 1 if and only if n = 3 or a prime congruent to 2 mod 3. - Jianing Song, Jan 08 2019
From Jianing Song, Oct 03 2022: (Start)
More generally, let pi be a prime element of Z[w] of norm p or p^2 for prime p, then:
- for p == 1 (mod 6), (Z[w]/(pi^e)Z[w])* = C_((p-1)*p^(e-1));
- for p == 5 (mod 6), (Z[w]/(pi^e)Z[w])* = C_(p^(e-1)) X C_(p^(e-1)*(p^2-1));
- for p = 3, (Z[w]/(pi^e)Z[w])* = C_2 for e = 1, C_3 X C_(3^floor((e-2)/2)) X C_(2*3^ceiling((e-2)/2)) for e >= 2;
- for p = 2, (Z[w]/(pi^e)Z[w])* = C_3 for e = 1, C_2 X C_(2^(e-2)) X C_(3*2^(e-1)) for e >= 2.
For a more general result see my link below. (End)

Examples

			(Z[w]/1Z[w])* = C_1 (has rank 0);
(Z[w]/2Z[w])* = C_3 (has rank 1);
(Z[w]/3Z[w])* = C_6 (has rank 1);
(Z[w]/4Z[w])* = C_2 X C_6 (has rank 2);
(Z[w]/5Z[w])* = C_24 (has rank 1);
(Z[w]/6Z[w])* = C_3 X C_6 (has rank 2);
(Z[w]/7Z[w])* = C_6 X C_6 (has rank 2);
(Z[w]/8Z[w])* = C_2 X C_2 X C_12 (has rank 3);
(Z[w]/9Z[w])* = C_3 X C_3 X C_6 (has rank 3);
(Z[w]/10Z[w])* = C_3 X C_24 (has rank 2).
		

Crossrefs

Equivalent in the ring of Gaussian integers: A316506.

Programs

  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    grad(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2&e==1, r*=3);
            if(p==2&e==2, r*=12);
            if(p==2&e>=3, r*=24);
            if(p==3&e==1, r*=6);
            if(p==3&e>=2, r*=54);
            if(p%6==1, r*=(rad(p-1))^2);
            if(p%6==5&e==1, r*=rad(p^2-1));
            if(p%6==5&e>=2, r*=p^2*rad(p^2-1));
        );
        return(r);
    }
    a(n)=if(n>1, vecmax(factor(grad(n))[, 2]), 0); \\ The program is based on the facts that although rank((Z[w]/nZ[w])*) is not additive, the p-rank of (Z[w]/nZ[w])* is additive for any prime p, and that rank((Z[w]/nZ[w])*) is the maximum of the p-rank of (Z[w]/nZ[w])* where p runs through all primes. - Jianing Song, Aug 05 2019

Formula

Let p be an odd prime, then: a(p^e) = 2 if p == 1 (mod 6) or p == 5 (mod 6), e >= 2; a(p) = 1 if p == 5 (mod 6). a(3) = 1, a(3^e) = 3 for e >= 2. a(2) = 1, a(4) = 2, a(2^e) = 3 for e >= 3. [Corrected by Jianing Song, Aug 05 2019]

Extensions

Corrected by Jianing Song, Jan 12 2019
Showing 1-8 of 8 results.