A319448 Moebius function mu(n) defined for the Eisenstein integers.
1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0
Offset: 1
Examples
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2. a(14) = -1 because 14 is factored as 2*(2 + w)*(2 + w') with three distinct Eisenstein prime factors. a(55) = (-1)*(-1) = 1 because 55 = 5*11 where 5 and 11 are congruent to 2 mod 3 (thus being Eisenstein primes).
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Wikipedia, Eisenstein integer
Crossrefs
Cf. A102283.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), this sequence ("mu", A008683).
Equivalent in the ring of Gaussian integers: A318608.
Programs
-
Mathematica
f[p_, e_] := If[p == 3 || e > 1, 0, Switch[Mod[p, 3], 1, 1, 2, -1]]; eisMu[1] = 1; eisMu[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisMu, 100] (* Amiram Eldar, Feb 10 2020 *)
-
PARI
a(n)= { my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==3||e>=2, r=0); if(Mod(p, 3)==2&e==1, r*=-1); ); return(r); }
Formula
a(n) = 0 if n is divisible by 3 or has a square prime factor, otherwise Product_{p divides n} (3 - 2*(p mod 3)) where the product is taken over the primes.
Multiplicative with a(p^e) = 0 if p = 3 or e > 1, a(p) = 1 if p == 1 (mod 3) and -1 if p == 2 (mod 3).
For squarefree n, a(n) = Legendre symbol (n, 3) = Kronecker symbol (-3, n) = A102283(n).
Comments