cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319448 Moebius function mu(n) defined for the Eisenstein integers.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Just like the original Moebius function over the integers, a(n) = 0 if n has a squared Eisenstein prime factor, otherwise (-1)^t if n is a product of an Eisenstein unit and t distinct Eisenstein prime factors.
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2. a(n) = 0 for n divisible by 3 since 3 = w'*(1 + w)^2 contains a squared factor. For rational primes p == 1 (mod 3), p is always factored as (x + y*w)(x + y*w'), x + y*w and x + y*w' are not associated so a(p) = (-1)*(-1) = 1.

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
a(14) = -1 because 14 is factored as 2*(2 + w)*(2 + w') with three distinct Eisenstein prime factors.
a(55) = (-1)*(-1) = 1 because 55 = 5*11 where 5 and 11 are congruent to 2 mod 3 (thus being Eisenstein primes).
		

Crossrefs

Cf. A102283.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), this sequence ("mu", A008683).
Equivalent in the ring of Gaussian integers: A318608.

Programs

  • Mathematica
    f[p_, e_] := If[p == 3 || e > 1, 0, Switch[Mod[p, 3], 1, 1, 2, -1]]; eisMu[1] = 1; eisMu[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisMu, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==3||e>=2, r=0);
            if(Mod(p, 3)==2&e==1, r*=-1);
        );
        return(r);
    }

Formula

a(n) = 0 if n is divisible by 3 or has a square prime factor, otherwise Product_{p divides n} (3 - 2*(p mod 3)) where the product is taken over the primes.
Multiplicative with a(p^e) = 0 if p = 3 or e > 1, a(p) = 1 if p == 1 (mod 3) and -1 if p == 2 (mod 3).
For squarefree n, a(n) = Legendre symbol (n, 3) = Kronecker symbol (-3, n) = A102283(n).