cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319470 Number of partitions of n into exactly five nonzero decimal palindromes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 22, 29, 34, 42, 48, 57, 63, 72, 77, 85, 88, 95, 96, 100, 99, 101, 98, 98, 93, 92, 87, 85, 80, 79, 74, 73, 70, 69, 67, 67, 65, 66, 65, 66, 66, 67, 68, 69, 70, 72, 73, 75, 76, 78, 79, 81, 81, 83, 83, 84, 84, 85, 84
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2018

Keywords

Crossrefs

Column k=5 of A319453.
Cf. A002113.

Programs

  • Maple
    p:= proc(n) option remember; local i, s; s:= ""||n;
          for i to iquo(length(s), 2) do if
            s[i]<>s[-i] then return false fi od; true
        end:
    h:= proc(n) option remember; `if`(n<1, 0,
         `if`(p(n), n, h(n-1)))
        end:
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i (k-> b(n, h(n), k)-b(n, h(n), k-1))(5):
    seq(a(n), n=0..100);
  • Mathematica
    Table[Count[IntegerPartitions[n,{5}],?(AllTrue[#,PalindromeQ]&)],{n,0,70}] (* _Harvey P. Dale, Oct 20 2024 *)

Formula

a(n) = [x^n y^5] 1/Product_{j>=2} (1-y*x^A002113(j)).