A319501 Number T(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the set; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 3, 0, 2, 12, 13, 0, 2, 38, 105, 73, 0, 3, 110, 588, 976, 501, 0, 4, 302, 2811, 8416, 9945, 4051, 0, 5, 806, 12354, 59488, 121710, 111396, 37633, 0, 6, 2109, 51543, 375698, 1185360, 1830822, 1366057, 394353, 0, 8, 5450, 207846, 2209276, 10096795, 23420022, 28969248, 18235680, 4596553
Offset: 0
Examples
T(2,2) = 3: {ab}, {ba}, {a,b}. T(3,2) = 12: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}. T(4,2) = 38: {aaab}, {aaba}, {aabb}, {abaa}, {abab}, {abba}, {abbb}, {baaa}, {baab}, {baba}, {babb}, {bbaa}, {bbab}, {bbba}, {a,aab}, {a,aba}, {a,abb}, {a,baa}, {a,bab}, {a,bba}, {a,bbb}, {aa,ab}, {aa,ba}, {aa,bb}, {aaa,b}, {aab,b}, {ab,ba}, {ab,bb}, {aba,b}, {abb,b}, {b,baa}, {b,bab}, {b,bba}, {ba,bb}, {a,aa,b}, {a,ab,b}, {a,b,ba}, {a,b,bb}. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 3; 0, 2, 12, 13; 0, 2, 38, 105, 73; 0, 3, 110, 588, 976, 501; 0, 4, 302, 2811, 8416, 9945, 4051; 0, 5, 806, 12354, 59488, 121710, 111396, 37633; 0, 6, 2109, 51543, 375698, 1185360, 1830822, 1366057, 394353;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i))) end: T:= (n, k)-> add((-1)^i*binomial(k, i)*h(n$2, k-i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] h[n, n, k-i], {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 05 2020, after Alois P. Heinz *)
Formula
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A292804(n,k-i).