A319506 Number of numbers of the form 2*p or 3*p between consecutive triangular numbers T(n - 1) < {2,3}*p <= T(n) with p prime.
0, 0, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 4, 3, 3, 3, 4, 5, 2, 4, 3, 5, 5, 2, 6, 3, 5, 5, 5, 5, 6, 4, 3, 7, 5, 6, 6, 5, 6, 7, 4, 5, 6, 6, 7, 6, 7, 9, 6, 6, 7, 8, 5, 6, 7, 9, 7, 7, 8, 7, 11, 7, 8, 8, 7, 6, 11, 5, 12, 7, 7, 7, 11, 11, 7, 12, 10, 9, 10, 7, 9, 9, 8, 10, 12, 10, 7, 10, 9, 12, 9, 11, 10, 13, 14, 10, 7
Offset: 1
Keywords
Examples
a(3) = 2 since (T(3 - 1),T(3)] = {4 = 2*2,5,6 = 2*3 = 3*2}, 2,3 prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Count[ Select[Range[(n - 1) n/2 + 1, n (n + 1)/2], PrimeQ[#/2] || PrimeQ[#/3] &], _Integer], {n, 1, 100}] p23[{a_,b_}]:=Module[{r=Range[a+1,b]},Count[Union[Join[r/2,r/3]], ?PrimeQ]]; p23/@Partition[Accumulate[Range[0,100]],2,1] (* _Harvey P. Dale, May 02 2020 *)
-
PARI
isok1(n, k) = ((n%k) == 0) && isprime(n/k); isok2(n) = isok1(n,2) || isok1(n,3); t(n) = n*(n+1)/2; a(n) = sum(i=t(n-1)+1, t(n), isok2(i)); \\ Michel Marcus, Oct 12 2018
Comments