A319511 Triangle read by rows: T(n,k) is the number of Boolean functions on n variables having an algebraic degree equal to k (for n >= 0 and 0 <= k <= n).
1, 1, 2, 1, 6, 8, 1, 14, 112, 128, 1, 30, 2016, 30720, 32768, 1, 62, 65472, 67043328, 2080374784, 2147483648, 1, 126, 4194176, 4398042316800, 144110790029344768, 9079256848778919936, 9223372036854775808
Offset: 0
Examples
Triangle begins: 1; 1, 2; 1, 6, 8; 1, 14, 112, 128; 1, 30, 2016, 30720, 32768; 1, 62, 65472, 67043328, 2080374784, 2147483648; 1, 126, 4194176, 4398042316800, 144110790029344768, 9079256848778919936, 9223372036854775808; ... From _Andrew Howroyd_, Sep 23 2018: (Start) Case n=2: There are a total of 15 Boolean functions on two variables excluding the constant 0 function or equivalently 15 nonempty sets of subsets of {1,2}. These can be partitioned according to k the size of the largest subset as follows: k=0: {{}}; k=1: {{1}}, {{1},{}}, {{2}}, {{2},{}}, {{1},{2}}, {{1},{2},{}}; k=2: {{1,2}}, {{1,2},{}}, {{1,2},{1}}, {{1,2},{1},{}}, {{1,2},{2}}, {{1,2},{2},{}}, {{1,2},{1},{2}}, {{1,2},{1},{2},{}}. (End)
Links
- Valentin Bakoev, Rows n=0..8 of the triangle, flattened
- Valentin Bakoev, Distribution of the boolean functions of n variables according to their algebraic degrees, Serdica Journal of Computing, 13 (2019), No 2, pp 17-26.
- Valentin Bakoev, Fast Computing the Algebraic Degree of Boolean Functions, arXiv:1905.08649 [cs.DM], 2019.
- Wikipedia, Algebraic normal form
Programs
-
Mathematica
Table[(2^Binomial[n, k] - 1)*2^Sum[Binomial[n, i], {i, 0, k - 1}], {n, 0, 6}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 02 2019 *)
-
Maxima
T(n,k):= (2^binomial(n,k) - 1)*2^sum(binomial(n,i), i, 0, k-1);
-
PARI
T(n,k) = {((2^binomial(n, k)) - 1)*2^sum(i=0, k-1, binomial(n, i))} \\ Andrew Howroyd, Sep 22 2018
Comments