A319518 Number of sets of nonempty words with a total of n letters over n-ary alphabet such that if a letter occurs in the set all predecessors occur at least once.
1, 1, 4, 27, 218, 2178, 25529, 343392, 5205948, 87740878, 1626182463, 32852520594, 718169744206, 16883948532684, 424649281630018, 11374387591643065, 323183885622356184, 9706973096869527210, 307248234238900686688, 10220414166250239718518
Offset: 0
Keywords
Examples
a(0) = 1: {}. a(1) = 1: {a}. a(2) = 4: {aa}, {ab}, {ba}, {a,b}. a(3) = 27: {aaa}, {aab}, {aba}, {abb}, {abc}, {acb}, {baa}, {bab}, {bac}, {bba}, {bca}, {cab}, {cba}, {a,aa}, {a,ab}, {a,ba}, {a,bb}, {a,bc}, {a,cb}, {aa,b}, {ab,b}, {ab,c}, {ac,b}, {b,ba}, {b,ca}, {ba,c}, {a,b,c}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Programs
-
Maple
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i))) end: a:= n-> add(add((-1)^i*binomial(k, i)*h(n$2, k-i), i=0..k), k=0..n): seq(a(n), n=0..20);
-
Mathematica
h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[h[n - i*j, i - 1, k]*Binomial[k^i, j], {j, 0, n/i}]]]; a[n_] := Sum[Sum[(-1)^i*Binomial[k, i]*h[n, n, k-i], {i, 0, k}], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 10 2022, after Alois P. Heinz *)