cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319523 Square array T(n, k) (n >= 1, k >= 1) read by antidiagonals upwards: T(n, k) is the unique positive integer m such that A319521(m) = n and A319522(m) = k.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 4, 15, 14, 9, 11, 12, 35, 18, 13, 10, 33, 28, 45, 26, 21, 17, 30, 77, 36, 65, 42, 19, 8, 51, 70, 99, 52, 105, 38, 27, 25, 24, 119, 90, 143, 84, 95, 54, 49, 22, 75, 56, 153, 130, 231, 76, 135, 98, 39, 23, 66, 175, 72, 221, 210, 209, 108, 245
Offset: 1

Views

Author

Rémy Sigrist, Sep 22 2018

Keywords

Examples

			Array T(n, k) begins:
  n\k|    1    2    3    4    5    6    7    8    9   10   11   12
  ---+------------------------------------------------------------
    1|    1    3    7    9   13   21   19   27   49   39   29   63
    2|    2    6   14   18   26   42   38   54   98   78   58  126
    3|    5   15   35   45   65  105   95  135  245  195  145  315
    4|    4   12   28   36   52   84   76  108  196  156  116  252
    5|   11   33   77   99  143  231  209  297  539  429  319  693
    6|   10   30   70   90  130  210  190  270  490  390  290  630
    7|   17   51  119  153  221  357  323  459  833  663  493 1071
    8|    8   24   56   72  104  168  152  216  392  312  232  504
    9|   25   75  175  225  325  525  475  675 1225  975  725 1575
   10|   22   66  154  198  286  462  418  594 1078  858  638 1386
		

Crossrefs

Cf. A001221, A001222, A061898, A275407 (main diagonal), A297002 (first row), A319521, A319522, A319525 (first column).

Programs

  • PARI
    T(n,k) = my (fn=factor(n), fk=factor(k)); prod(i=1, #fn~, prime(2*primepi(fn[i,1])-1)^fn[i,2]) * prod(i=1, #fk~, prime(2*primepi(fk[i,1]))^fk[i,2])

Formula

T(n, k) = A061898(T(k, n)).
T(n, n) = A275407(n).
T(n, 1) = A319525(n).
T(1, k) = A297002(k).
T(n, k) = T(n, 1) * T(1, k) = A319525(n) * A297002(k).
A001221(T(n, k)) = A001221(n) + A001221(k).
A001222(T(n, k)) = A001222(n) + A001222(k).