A319535 Primes of the form 2*6^k - 1.
11, 71, 431, 2591, 15551, 4353564671, 5642219814911, 341163456359156416511, 2046980738154938499071, 20628849596981071092343898111, 26734989077687468135677691953151, 207891275068097752223029732627709951, 269427092488254686881046533485512097791
Offset: 1
Keywords
Examples
2*6^1 - 1 = 11, 2*6^2 - 1 = 71, 2*6^3 - 1 = 431, 2*6^4 - 1 = 2591 and 2*6^5 - 1 = 15551 are primes, but 2*6^6 - 1 = 93311 = 23*4057 is not.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..26
Crossrefs
Programs
-
Magma
[k: n in [1..100] | IsPrime(k) where k is 2*6^n-1]; // K. D. Bajpai, Nov 15 2019
-
Maple
A319535:= n-> (2*6^n-1): select(isprime, [seq((A319535(n), n=1..200))]); # K. D. Bajpai, Nov 15 2019
-
Mathematica
Select[Table[2*6^k-1,{k,1600}], PrimeQ[#]&] (* K. D. Bajpai, Nov 15 2019 *)
-
PARI
for(n=1, 99, my(t); if(ispseudoprime(t=2*6^n-1), print1(t", ")))
Formula
a(n) = 2*6^A057472(n) - 1.
Comments