cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A319581 Square array T(n, k) = Sum_{p prime} [v_p(n) >= v_p(k) > 0] read by antidiagonals up, where [] is the Iverson bracket and v_p is the p-adic valuation, n >= 1, k >= 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Luc Rousseau, Sep 23 2018

Keywords

Comments

T(., k) is additive and k-periodic.
T(n, .) is additive and n^2-periodic.

Examples

			T(60, 50) = T(2^2 * 3^1 * 5^1, 2^1 * 5^2)
  = T(2^2, 2^1) + T(3^1, 3^0) + T(5^1, 5^2)
  = [2 >= 1 > 0] + [1 >= 0 > 0] + [1 >= 2 > 0]
  = 1 + 0 + 0
  = 1.
Array begins (zeros replaced by dots):
     k =                 1 1 1
   n   1 2 3 4 5 6 7 8 9 0 1 2
   =  ------------------------
   1 | . . . . . . . . . . . .
   2 | . 1 . . . 1 . . . 1 . .
   3 | . . 1 . . 1 . . . . . 1
   4 | . 1 . 1 . 1 . . . 1 . 1
   5 | . . . . 1 . . . . 1 . .
   6 | . 1 1 . . 2 . . . 1 . 1
   7 | . . . . . . 1 . . . . .
   8 | . 1 . 1 . 1 . 1 . 1 . 1
   9 | . . 1 . . 1 . . 1 . . 1
  10 | . 1 . . 1 1 . . . 2 . .
  11 | . . . . . . . . . . 1 .
  12 | . 1 1 1 . 2 . . . 1 . 2
		

Crossrefs

Cf. A319582 (a multiplicative variant).
Cf. A001221.

Programs

  • Mathematica
    F[n_] := If[n == 1, {}, FactorInteger[n]]
    V[p_] := If[KeyExistsQ[#, p], #[p], 0] &
    PreT[n_, k_] :=
    Module[{fn = F[n], fk = F[k], p, an = <||>, ak = <||>, w},
      p = Union[First /@ fn, First /@ fk];
      (an[#[[1]]] = #[[2]]) & /@ fn;
      (ak[#[[1]]] = #[[2]]) & /@ fk;
      w = ({V[#][an], V[#][ak]}) & /@ p;
      Select[w, (#[[1]] >= #[[2]] > 0) &]
      ]
    T[n_, k_] := Length[PreT[n, k]]
    A004736[n_] := Binomial[Floor[3/2 + Sqrt[2*n]], 2] - n + 1
    A002260[n_] := n - Binomial[Floor[1/2 + Sqrt[2*n]], 2]
    a[n_] := T[A004736[n], A002260[n]]
    Table[a[n], {n, 1, 90}]
  • PARI
    maxp(n) = if (n==1, 1, vecmax(factor(n)[,1]));
    T(n, k) = {pmax = max(maxp(n), maxp(k)); x = 0; forprime(p=2, pmax, if ((valuation(n, p) >= valuation(k, p)) && (valuation(k, p) > 0), x ++);); x;} \\ Michel Marcus, Oct 28 2018

Formula

T(n, k) = Sum_{p prime} [v_p(n) >= v_p(k) > 0].
T(n, n) = omega(n) = A001221(n) = the number of distinct primes dividing n.
a(n) = log_2(A319582(n)).
Showing 1-1 of 1 results.