A319583 Numbers in base 10 that are palindromic in bases 2, 4, and 16.
0, 1, 3, 5, 15, 17, 51, 85, 255, 257, 273, 771, 819, 1285, 1365, 3855, 4095, 4097, 4369, 12291, 13107, 20485, 21845, 61455, 65535, 65537, 65793, 69649, 69905, 196611, 197379, 208947, 209715, 327685, 328965, 348245, 349525, 983055, 986895, 1044735, 1048575
Offset: 1
Examples
255 is 11111111 in binary, 3333 in quaternary and FF in hexadecimal. Hence 255 is in the sequence. Although 21 is 10101 in binary and 111 in quaternary, it is 15 in hexadecimal and therefore not in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [0..2*10^7] | Intseq(n, 2) eq Reverse(Intseq(n, 2)) and Intseq(n, 4) eq Reverse(Intseq(n, 4)) and Intseq(n, 16) eq Reverse(Intseq(n, 16))]; // Vincenzo Librandi, Sep 24 2018
-
Maple
extend:= proc(x, d) local a,b,m; if d::odd then m:= (d-1)/2; a:= x mod 16^(m+1); b:= floor(x/16^m); a + 16^(m+1)*b else m:= d/2; a:= x mod 16^m; b:= floor(x/16^m); (a + 16^(m+1)*b, a + 16^m * (a mod 16) + 16^(m+1)*b) fi end proc: V:= [1,3,5,15]: R:= 0, op(V): for d from 1 to 6 do V:= map(extend,V,d); R:= R, op(V); od: R; # Robert Israel, Nov 12 2023
-
Mathematica
palQ[n_, b_] := PalindromeQ[IntegerDigits[n, b]]; Reap[Do[If[palQ[n, 2] && palQ[n, 4] && palQ[n, 16], Print[n]; Sow[n]], {n, 0, 10^6}]][[2, 1]] (* Jean-François Alcover, Sep 25 2018 *)
-
Sage
[n for n in (0..1000) if Word(n.digits(2)).is_palindrome() and Word(n.digits(4)).is_palindrome() and Word(n.digits(16)).is_palindrome()]
Comments