A319592 Decimal expansion of the probability that an integer 4-tuple is pairwise coprime.
1, 1, 4, 8, 8, 4, 0, 4, 4, 0, 8, 0, 2, 2, 8, 7, 8, 8, 7, 2, 9, 2, 5, 1, 2, 7, 6, 7, 0, 1, 5, 9, 9, 0, 9, 7, 8, 4, 8, 7, 1, 3, 5, 5, 2, 6, 8, 7, 2, 8, 3, 0, 1, 7, 6, 2, 4, 8, 4, 8, 4, 2, 7, 0, 6, 2, 5, 6, 6, 6, 7, 2, 8, 0, 1, 6, 1, 6, 7, 4, 6, 1, 7, 4, 0, 2, 3
Offset: 0
Examples
0.114884044080228788729251276701599097848713552687283...
Links
- László Tóth, The probability that k positive integers are pairwise relatively prime, Fibonacci Quarterly, Vol. 40, No. 1 (2002), pp. 13-18.
Programs
-
Mathematica
$MaxExtraPrecision = 1000; nm = 1000; c = LinearRecurrence[{-2, 3}, {0, -12}, nm]; f[x_] := (1 - x)^3*(1 + 3*x); RealDigits[f[1/2]*f[1/3]*Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k - 1/3^k)/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]
-
PARI
prodeulerrat((1 - 1/p)^3 * (1 + 3/p)) \\ Amiram Eldar, Jun 29 2023
Formula
Equals Product_{p prime} (1 - 1/p)^3 * (1 + 3/p).