A319593 Decimal expansion of the probability that an integer triple is pairwise unitary coprime.
5, 5, 2, 3, 0, 6, 9, 0, 4, 1, 5, 7, 9, 4, 2, 8, 1, 1, 1, 8, 3, 2, 2, 7, 3, 4, 7, 3, 0, 9, 2, 6, 4, 7, 0, 8, 5, 3, 5, 4, 5, 5, 8, 3, 1, 4, 0, 4, 4, 9, 7, 6, 0, 7, 3, 3, 0, 2, 2, 7, 0, 0, 8, 0, 1, 5, 5, 3, 7, 3, 7, 2, 1, 4, 2, 7, 3, 8, 5, 3, 2, 0, 9, 4, 0, 6, 1
Offset: 0
Examples
0.552306904157942811183227347309264708535455831404497...
References
- Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 54.
Links
- László Tóth, Multiplicative arithmetic functions of several variables: a survey, in Themistocles M. Rassias and Panos M. Pardalos (eds.), Mathematics Without Boundaries, Springer, New York, NY, 2014, pp. 483-514 (see p. 509), preprint, arXiv:1310.7053 [math.NT], 2013-2014 (see p. 22).
Programs
-
Mathematica
$MaxExtraPrecision = 1000; nm = 1000; f[x_] := 1 - 4*x^2 + 7*x^3 - 9*x^4 + 8*x^5 - 2*x^6 - 3*x^7 + 2*x^8; c = LinearRecurrence[{-1, 3, -4, 5, -3, -1, 2}, {0, -8, 21, -68, 180, -503, 1428}, nm]; RealDigits[f[1/2] * f[1/3] * Zeta[2] * Zeta[3] * Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k - 1/3^k)/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]
-
PARI
zeta(2) * zeta(3) * prodeulerrat(1-4/p^2+7/p^3-9/p^4+8/p^5-2/p^6-3/p^7+2/p^8) \\ Amiram Eldar, Jun 29 2023
Formula
Equals zeta(2) * zeta(3) * Product_{p prime} (1 - 4/p^2 + 7/p^3 - 9/p^4 + 8/p^5 - 2/p^6 - 3/p^7 + 2/p^8).
Comments