A319594 Number of solutions to dft(p)^2 + dft(q)^2 = (4n-3), where p and q are even sequences of length 2n-1, p(0)=0, p(k)=+1,-1 when k<>0, q(k) is +1,-1 for all k, and dft(x) denotes the discrete Fourier transform of x.
2, 4, 4, 12, 12, 0, 12, 16, 0, 36, 24, 0, 20, 36, 0, 60
Offset: 1
Examples
For n=1, the a(1)=2 solutions are ((0),(-)) and ((0),(+)). For n=2, the a(2)=4 solutions are ((0,-,-), (-,+,+)), ((0,-,-), (+,-,-)), ((0,+,+),(-,+,+)) and ((0,+,+), (+,-,-)).
Links
- Jeffery Kline, List of all pairs (p,q) that are counted by a(n), for 1<=n<=16.
- Jeffery Kline, List of pairs (p,q) that establish a(n)>0, for n=25, 26, and 29.
- Jeffery Kline, Geometric Search for Hadamard Matrices, Theoret. Comput. Sci. 778 (2019), 33-46.
- J. Seberry and N.A. Balonin, The Propus Construction for Symmetric Hadamard Matrices, arXiv:1512.01732 [math.CO], 2015.
- J. Seberry and N.A. Balonin, Two infinite families of symmetric Hadamard matrices, Australasian Journal of Combinatorics, 69 (2015), 349-357.
Comments