cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319594 Number of solutions to dft(p)^2 + dft(q)^2 = (4n-3), where p and q are even sequences of length 2n-1, p(0)=0, p(k)=+1,-1 when k<>0, q(k) is +1,-1 for all k, and dft(x) denotes the discrete Fourier transform of x.

Original entry on oeis.org

2, 4, 4, 12, 12, 0, 12, 16, 0, 36, 24, 0, 20, 36, 0, 60
Offset: 1

Views

Author

Jeffery Kline, Dec 16 2018

Keywords

Comments

Each solution (p,q) corresponds to a family of symmetric Hadamard matrices of size 8n-4. To construct one member from this family, set A = circulant(p) + I, B = circulant(q), C = B, D = A - 2 I and H = [ [A, B, C, D], [B, D, -A, -C], [C, -A, -D, B], [D, -C, B, -A]]. Then A, B, C and D are symmetric and H is Hadamard and symmetric.
Since p and q are assumed to be even, dft(p) and dft(q) are real-valued.
2 divides a(n) for all n. If (p,q) is a solution, then (p,-q) is also a solution.
4 divides a(n) when n>1. If (p,q) is a solution, then (+/-p,+/-q) are also solutions. When n=1, p is the length-1 sequence, (0).
It is known that a(n)>0 for n=25, 26, 29.

Examples

			For n=1, the a(1)=2 solutions are ((0),(-)) and ((0),(+)). For n=2, the a(2)=4 solutions are ((0,-,-), (-,+,+)), ((0,-,-), (+,-,-)), ((0,+,+),(-,+,+)) and ((0,+,+), (+,-,-)).
		

Crossrefs