A321851
Number of solutions to |dft(a)^2 + dft(b)^2 + dft(d)^2| + |dft(c)^2| = 4n, where a,b,c,d are +1,-1 sequences of length n and dft(x) denotes the discrete Fourier transform of x.
Original entry on oeis.org
16, 96, 480, 1600, 4800, 13824
Offset: 1
- L. D. Baumert and M. Hall, Hadamard matrices of the Williamson type, Math. Comp. 19:91 (1965) 442-447.
- Jeffery Kline, Geometric Search for Hadamard Matrices, Theoret. Comput. Sci. 778 (2019), 33-46.
- Jeffery Kline, List of tuples (a,b,c,d) to demonstrate that a(n)>0, for 1<=n<=33 and n=35.
Sequence
A258218 concerns the Paley construction.
A321338
Number of solutions to dft(a)^2 + dft(b)^2 + dft(c)^2 + dft(d)^2 = 4n, where a,b,c,d are even +1,-1 sequences of length n and dft(x) denotes the discrete Fourier transform of x.
Original entry on oeis.org
16, 96, 64, 256, 192, 1536, 960
Offset: 1
- L. D. Baumert and M. Hall, Hadamard matrices of the Williamson type, Math. Comp. 19:91 (1965) 442-447.
- D. Z. Dokovic, Williamson matrices of order 4n for n= 33, 35, 39, Discrete mathematics (1993) May 15;115(1-3):267-71.
- Jeffery Kline, A complete list of solutions (a,b,c,d), for 1<=n<=7.
A322617
Number of solutions to |dft(a)^2 + dft(d)^2| + |dft(b)^2 + dft(c)^2| = 4n, where a,b,c,d are +1,-1 sequences of length n and dft(x) denotes the discrete Fourier transform of x.
Original entry on oeis.org
16, 96, 576, 1664, 4800, 23040
Offset: 1
- L. D. Baumert and M. Hall, Hadamard matrices of the Williamson type, Math. Comp. 19:91 (1965) 442-447.
- W. H. Holzmann, H. Kharaghani and B. Tayfeh-Rezaie, Williamson matrices up to order 59, Des. Codes Cryptogr. 46 (2008), 343-352.
- Jeffery Kline, A complete list of solutions (a,b,c,d), for 1<=n<=5.
- Jeffery Kline, Geometric Search for Hadamard Matrices, Theoret. Comput. Sci. 778 (2019), 33-46.
A322639
Number of solutions to |dft(a)^2 + dft(b)^2 + dft(c)^2 + dft(d)^2| = 4n, where a,b,c,d are +1,-1 sequences of length n and dft(x) denotes the discrete Fourier transform of x.
Original entry on oeis.org
16, 96, 192, 896, 960, 4608, 6720
Offset: 1
- Jeffery Kline, A complete list of solutions (a,b,c,d), for 1<=n<=7.
- Jeffery Kline, List of tuples (a,b,c,d) to demonstrate that a(n)>0, for 1<=n<=22 and n=24.
Showing 1-4 of 4 results.
Comments