A319594
Number of solutions to dft(p)^2 + dft(q)^2 = (4n-3), where p and q are even sequences of length 2n-1, p(0)=0, p(k)=+1,-1 when k<>0, q(k) is +1,-1 for all k, and dft(x) denotes the discrete Fourier transform of x.
Original entry on oeis.org
2, 4, 4, 12, 12, 0, 12, 16, 0, 36, 24, 0, 20, 36, 0, 60
Offset: 1
For n=1, the a(1)=2 solutions are ((0),(-)) and ((0),(+)). For n=2, the a(2)=4 solutions are ((0,-,-), (-,+,+)), ((0,-,-), (+,-,-)), ((0,+,+),(-,+,+)) and ((0,+,+), (+,-,-)).
- Jeffery Kline, List of all pairs (p,q) that are counted by a(n), for 1<=n<=16.
- Jeffery Kline, List of pairs (p,q) that establish a(n)>0, for n=25, 26, and 29.
- Jeffery Kline, Geometric Search for Hadamard Matrices, Theoret. Comput. Sci. 778 (2019), 33-46.
- J. Seberry and N.A. Balonin, The Propus Construction for Symmetric Hadamard Matrices, arXiv:1512.01732 [math.CO], 2015.
- J. Seberry and N.A. Balonin, Two infinite families of symmetric Hadamard matrices, Australasian Journal of Combinatorics, 69 (2015), 349-357.
A321338
Number of solutions to dft(a)^2 + dft(b)^2 + dft(c)^2 + dft(d)^2 = 4n, where a,b,c,d are even +1,-1 sequences of length n and dft(x) denotes the discrete Fourier transform of x.
Original entry on oeis.org
16, 96, 64, 256, 192, 1536, 960
Offset: 1
- L. D. Baumert and M. Hall, Hadamard matrices of the Williamson type, Math. Comp. 19:91 (1965) 442-447.
- D. Z. Dokovic, Williamson matrices of order 4n for n= 33, 35, 39, Discrete mathematics (1993) May 15;115(1-3):267-71.
- Jeffery Kline, A complete list of solutions (a,b,c,d), for 1<=n<=7.
A322617
Number of solutions to |dft(a)^2 + dft(d)^2| + |dft(b)^2 + dft(c)^2| = 4n, where a,b,c,d are +1,-1 sequences of length n and dft(x) denotes the discrete Fourier transform of x.
Original entry on oeis.org
16, 96, 576, 1664, 4800, 23040
Offset: 1
- L. D. Baumert and M. Hall, Hadamard matrices of the Williamson type, Math. Comp. 19:91 (1965) 442-447.
- W. H. Holzmann, H. Kharaghani and B. Tayfeh-Rezaie, Williamson matrices up to order 59, Des. Codes Cryptogr. 46 (2008), 343-352.
- Jeffery Kline, A complete list of solutions (a,b,c,d), for 1<=n<=5.
- Jeffery Kline, Geometric Search for Hadamard Matrices, Theoret. Comput. Sci. 778 (2019), 33-46.
Showing 1-3 of 3 results.
Comments