A319596 Base-3 deletable primes (written in base 10).
2, 5, 7, 11, 17, 19, 23, 29, 47, 53, 59, 61, 71, 73, 83, 89, 101, 107, 137, 167, 173, 179, 181, 191, 197, 223, 233, 251, 263, 269, 317, 431, 461, 491, 503, 509, 521, 541, 547, 557, 569, 587, 593, 653, 659, 673, 677, 683, 701, 709, 719, 809, 911, 947, 953
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (first 177 terms from Robert Price)
Programs
-
Maple
S:= {2}: count:= 0: p:= 2; while count < 200 do p:= nextprime(p); d:= floor(log[3](p)); for i from 0 to d do x:= p mod 3^(i+1); q:= (x mod 3^i) + (p-x)/3; if q >= 3^(d-1) and member(q,S) then S:= S union {p}; count:= count+1; break fi od; od: sort(convert(S,list)); # Robert Israel, Nov 26 2020
-
Mathematica
b = 3; d = {}; p = Select[Range[2, 10000], PrimeQ[#] &]; For[i = 1, i <= Length[p], i++, c = IntegerDigits[p[[i]], b]; If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]]; For[j = 1, j <= Length[c], j++, t = Delete[c, j]; If[t[[1]] == 0, Continue[]]; If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; d (* Robert Price, Dec 05 2018 *)
-
Python
from sympy import isprime from sympy.ntheory.digits import digits def ok(n, base=3): if not isprime(n): return False if n < 3: return True s = "".join(str(d) for d in digits(n, base)[1:]) si = (s[:i]+s[i+1:] for i in range(len(s))) return any(t[0] != '0' and ok(int(t, base)) for t in si) print([k for k in range(954) if ok(k)]) # Michael S. Branicky, Jan 14 2022
Extensions
Removed the term 3. As pointed out by Kevin Ryde, there is no need to "seed" the list using base-2 assumptions. - Robert Price, Dec 05 2018
Comments