A319598 Numbers in base 10 that are palindromic in bases 2, 4, 8, and 16.
0, 1, 3, 5, 4095, 4097, 12291, 20485, 21845, 16777215, 16777217, 16781313, 50331651, 50343939, 83886085, 83906565, 89458005, 89478485, 68702703615, 68719476735, 68719476737, 68736258049, 206158430211, 206208774147, 343597383685, 343602954245, 343681290245
Offset: 1
Examples
4095 = 111111111111_2 = 333333_4 = 7777_8 = FFF_16. Hence 4095 is in the sequence.
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..114 (first 70 terms from Rémy Sigrist)
Programs
-
Mathematica
palQ[n_, b_] := PalindromeQ[IntegerDigits[n, b]]; Reap[Do[If[palQ[n, 2] && palQ[n, 4] && palQ[n, 8] && palQ[n, 16], Print[n]; Sow[n]], {n, 0, 10^6}]][[2, 1]] (* Jean-François Alcover, Sep 25 2018 *)
-
Sage
[n for n in (0..100000) if Word(n.digits(2)).is_palindrome() and Word(n.digits(4)).is_palindrome() and Word(n.digits(8)).is_palindrome() and Word(n.digits(16)).is_palindrome()]
Extensions
a(19)-a(27) from Rémy Sigrist, Nov 15 2018
Comments