cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319671 a(n) = [x^n] Product_{k>=2} (1 + x^k)^n.

Original entry on oeis.org

1, 0, 2, 3, 10, 30, 77, 252, 682, 2145, 6182, 18887, 56317, 170534, 515930, 1563843, 4759338, 14480073, 44203595, 134972504, 412984510, 1264601502, 3877302717, 11898761051, 36548512477, 112358685555, 345673541514, 1064250223230, 3278695047218, 10107173174013, 31174889414807
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2018

Keywords

Comments

Number of partitions of n into distinct parts > 1, with n types of each part.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k)^n, {k, 2, n}], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[1/((1 + x) QPochhammer[x, x^2])^n, {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[Exp[n Sum[(Sum[Mod[d, 2] d, {d, Divisors[k]}] + (-1)^k) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 30}]

Formula

a(n) = [x^n] exp(n*Sum_{k>=1} (A000593(k) + (-1)^k)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 3.136240011804974455586379053639831470878466... and c = 0.220695581251514154138820799337758703024... - Vaclav Kotesovec, Oct 06 2018