cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319688 Sum of digits when n is represented in phitorial (A001088) base.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 6, 7, 7, 8, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6
Offset: 0

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Examples

			For n = 9, its phitorial representation is "102" as 9 = 1*A001088(2) + 0*A001088(3) + 2*A001088(4) = 1*1 + 0*2 + 2*4. Thus a(9) = 1+0+2 = 3.
For n = 577, its phitorial representation is "300001" as 577 = 1*A001088(2) + 3*A001088(7) = 1*1 + 3*192, thus a(577) = 4.
		

Crossrefs

Cf. A000010, A001088 (gives the positions of ones), A231721, A231722.
Cf. also A000120, A034968, A276150.

Programs

  • Mathematica
    With[{max = 7}, bases = EulerPhi[Range[max, 1, -1]]; nmax = Times @@ bases - 1; a[n_] := Plus @@ IntegerDigits[n, MixedRadix[bases]]; Array[a, nmax, 0]] (* Amiram Eldar, Jul 29 2023 *)
  • PARI
    A319688(n) = { my(s=0, i=3, d, b); while(n, b = eulerphi(i); d = (n%b); s += d; n = (n-d)/b; i++); (s); };

Formula

Starting from i=3, compute the remainder when n is divided by phi(i), and then continue iterating with n -> floor(n/phi(i)), and i -> i+1, until n is zero. a(n) is the sum of remainders encountered in process.
For all n >= 0, a(A231722(n)) = n.