A319688 Sum of digits when n is represented in phitorial (A001088) base.
0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 6, 7, 7, 8, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6
Offset: 0
Examples
For n = 9, its phitorial representation is "102" as 9 = 1*A001088(2) + 0*A001088(3) + 2*A001088(4) = 1*1 + 0*2 + 2*4. Thus a(9) = 1+0+2 = 3. For n = 577, its phitorial representation is "300001" as 577 = 1*A001088(2) + 3*A001088(7) = 1*1 + 3*192, thus a(577) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..18432
Crossrefs
Programs
-
Mathematica
With[{max = 7}, bases = EulerPhi[Range[max, 1, -1]]; nmax = Times @@ bases - 1; a[n_] := Plus @@ IntegerDigits[n, MixedRadix[bases]]; Array[a, nmax, 0]] (* Amiram Eldar, Jul 29 2023 *)
-
PARI
A319688(n) = { my(s=0, i=3, d, b); while(n, b = eulerphi(i); d = (n%b); s += d; n = (n-d)/b; i++); (s); };
Formula
Starting from i=3, compute the remainder when n is divided by phi(i), and then continue iterating with n -> floor(n/phi(i)), and i -> i+1, until n is zero. a(n) is the sum of remainders encountered in process.
For all n >= 0, a(A231722(n)) = n.