cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319696 Number of distinct values obtained when Euler phi (A000010) is applied to the divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 4, 4, 2, 3, 2, 4, 4, 2, 2, 4, 3, 2, 4, 4, 2, 4, 2, 5, 4, 2, 4, 5, 2, 2, 4, 5, 2, 4, 2, 4, 6, 2, 2, 5, 3, 3, 4, 4, 2, 4, 4, 6, 4, 2, 2, 5, 2, 2, 5, 6, 4, 4, 2, 4, 4, 4, 2, 7, 2, 2, 6, 4, 4, 4, 2, 6, 5, 2, 2, 6, 4, 2, 4, 6, 2, 6, 4, 4, 4, 2, 4, 6, 2, 3, 6, 6, 2, 4, 2, 6, 8
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Examples

			For n = 6, it has four divisors: 1, 2, 3 and 6, and applying A000010 to these gives 1, 1, 2, 2, with just two distinct values, thus a(6) = 2.
		

Crossrefs

Cf. also A184395, A319686.

Programs

  • PARI
    A319696(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s=eulerphi(d)), mapput(m,s,s); k++)); (k); };

Formula

a(n) = A319695(n) + [n (mod 4) != 2], where [ ] is the Iverson bracket, resulting 0 when n = 2 mod 4, and 1 otherwise.