cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A319698 Filter sequence combining A003557(n) [n divided by largest squarefree divisor of n] with A319697(n) [sum of even squarefree divisors of n].

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 6, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 15, 16, 17, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 6, 19, 1, 27, 28, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 25, 6, 35, 1, 36, 1, 37, 1, 36, 1, 38, 1, 39, 15, 40, 1, 41, 1, 42, 43, 44, 1, 45, 1, 46, 1, 47, 1, 48, 1, 34, 1, 36, 1, 49, 1, 50, 6, 51, 1, 52, 1, 53, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2018

Keywords

Comments

Restricted growth sequence transform of ordered pair [A003557(n), A319697(n)].

Crossrefs

Cf also A291750, A291751.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A319697(n) = sumdiv(n, d, (!(d%2))*issquarefree(d)*d);
    v319698 = rgs_transform(vector(up_to,n,[A003557(n),A319697(n)]));
    A319698(n) = v319698[n];

A322022 Lexicographically earliest such sequence a that a(i) = a(j) => A305891(i) = A305891(j) and A319697(i) = A319697(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 11, 15, 3, 16, 7, 17, 18, 19, 3, 20, 3, 21, 11, 22, 11, 23, 3, 24, 11, 25, 3, 26, 3, 27, 28, 29, 3, 30, 7, 31, 11, 32, 3, 33, 11, 34, 11, 35, 3, 36, 3, 37, 28, 38, 11, 39, 3, 40, 11, 39, 3, 41, 3, 42, 28, 43, 11, 44, 3, 45, 46, 47, 3, 48, 11, 49, 11, 50, 3, 51, 11, 52, 11, 53, 11, 54, 3, 55, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A305891(n), A319697(n)], or equally, of the triple [A007814(n), A046523(n), A319697(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A319697(n) = sumdiv(n, d, (!(d%2))*issquarefree(d)*d);
    v322022 = rgs_transform(vector(up_to, n, [A007814(n), A046523(n), A319697(n)]));
    A322022(n) = v322022[n];

A323238 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = A291750(n) for all n, except for odd numbers n > 1, f(n) = 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 3, 14, 3, 15, 3, 16, 3, 17, 3, 18, 3, 19, 3, 20, 3, 21, 3, 22, 3, 23, 3, 24, 3, 17, 3, 25, 3, 26, 3, 27, 3, 28, 3, 29, 3, 30, 3, 31, 3, 23, 3, 32, 3, 33, 3, 34, 3, 33, 3, 35, 3, 36, 3, 37, 3, 38, 3, 39, 3, 40, 3, 41, 3, 42, 3, 43, 3, 44, 3, 31, 3, 33, 3, 45, 3, 46, 3, 47, 3, 48, 3, 49, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 08 2019

Keywords

Comments

For all i, j:
A319701(i) = A319701(j) => a(i) = a(j),
a(i) = a(j) => A146076(i) = A146076(j),
a(i) = a(j) => A319697(i) = A319697(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    Aux323238(n) = if((n>1)&&(n%2),0,(1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n)));
    v323238 = rgs_transform(vector(up_to, n, Aux323238(n)));
    A323238(n) = v323238[n];
Showing 1-3 of 3 results.