A319711 Sum of A034968(d) over proper divisors d of n, where A034968 gives the sum of digits in factorial base.
0, 1, 1, 2, 1, 4, 1, 4, 3, 5, 1, 7, 1, 4, 6, 6, 1, 8, 1, 10, 5, 6, 1, 11, 4, 5, 6, 9, 1, 15, 1, 10, 7, 7, 6, 15, 1, 6, 6, 16, 1, 15, 1, 13, 13, 8, 1, 16, 3, 10, 8, 9, 1, 14, 8, 14, 7, 6, 1, 25, 1, 5, 13, 13, 7, 18, 1, 13, 9, 18, 1, 21, 1, 6, 12, 12, 7, 15, 1, 25, 9, 8, 1, 26, 9, 7, 7, 20, 1, 29, 6, 16, 6, 9, 8, 21, 1, 10, 14, 19, 1, 18, 1, 15, 22
Offset: 1
Links
Programs
-
Mathematica
d[n_] := Module[{k = n, m = 2, s = 0, r}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, s += r; m++]; s]; a[n_] := DivisorSum[n, d[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Mar 05 2024 *)
-
PARI
A034968(n) = { my(s=0, b=2, d); while(n, d = (n%b); s += d; n = (n-d)/b; b++); (s); }; A319711(n) = sumdiv(n,d,(d
A034968(d));