A319730 Number T(n,k) of plane partitions of n into parts of exactly k sorts which are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 3, 2, 0, 6, 11, 3, 0, 13, 48, 33, 5, 0, 24, 165, 212, 75, 7, 0, 48, 573, 1253, 798, 172, 11, 0, 86, 1759, 6114, 6175, 2284, 326, 15, 0, 160, 5473, 29573, 45040, 25697, 6198, 631, 22, 0, 282, 16051, 131488, 289685, 238516, 86189, 14519, 1102, 30
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 3, 2; 0, 6, 11, 3; 0, 13, 48, 33, 5; 0, 24, 165, 212, 75, 7; 0, 48, 573, 1253, 798, 172, 11; 0, 86, 1759, 6114, 6175, 2284, 326, 15; 0, 160, 5473, 29573, 45040, 25697, 6198, 631, 22; 0, 282, 16051, 131488, 289685, 238516, 86189, 14519, 1102, 30; ...
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- Eric Weisstein's World of Mathematics, Plane partition
- Wikipedia, Plane partition
Crossrefs
Formula
T(n,k) = 1/k! * A319600(n,k).