A319748 Number of non-isomorphic set multipartitions (multisets of sets) of weight n with empty intersection.
1, 0, 1, 3, 10, 25, 72, 182, 502, 1332, 3720, 10380, 30142, 88842, 270569, 842957, 2703060, 8885029, 29990388, 103743388, 367811233, 1334925589, 4957151327, 18817501736, 72972267232, 288863499000, 1166486601571, 4802115258807, 20141268290050, 86017885573548, 373852868791639
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(2) = 1 through a(4) = 10 set multipartitions: {{1},{2}} {{1},{2,3}} {{1},{2,3,4}} {{1},{2},{2}} {{1,2},{3,4}} {{1},{2},{3}} {{1},{1},{2,3}} {{1},{2},{1,2}} {{1},{2},{3,4}} {{1},{3},{2,3}} {{1},{1},{2},{2}} {{1},{2},{2},{2}} {{1},{2},{3},{3}} {{1},{2},{3},{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))} R(q, n)={vector(n, t, x*Ser(K(q, t, n)/t))} a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(u=R(q,n)); s+=permcount(q)*polcoef(exp(sum(t=1, n, u[t], O(x*x^n))) - exp(sum(t=1, n\2, x^t*u[t], O(x*x^n)))/(1-x), n)); s/n!)} \\ Andrew Howroyd, May 30 2023
Extensions
Terms a(11) and beyond from Andrew Howroyd, May 30 2023
Comments