A319751 Number of non-isomorphic set systems of weight n with empty intersection.
1, 0, 1, 2, 6, 13, 35, 83, 217, 556, 1504, 4103, 11715, 34137, 103155, 320217, 1025757, 3376889, 11436712, 39758152, 141817521, 518322115, 1939518461, 7422543892, 29028055198, 115908161428, 472185530376, 1961087909565, 8298093611774, 35750704171225, 156734314212418
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 set systems: 2: {{1},{2}} 3: {{1},{2,3}} {{1},{2},{3}} 4: {{1},{2,3,4}} {{1,2},{3,4}} {{1},{2},{1,2}} {{1},{2},{3,4}} {{1},{3},{2,3}} {{1},{2},{3},{4}} 5: {{1},{2,3,4,5}} {{1,2},{3,4,5}} {{1},{2},{3,4,5}} {{1},{4},{2,3,4}} {{1},{2,3},{4,5}} {{1},{2,4},{3,4}} {{2},{3},{1,2,3}} {{2},{1,3},{2,3}} {{4},{1,2},{3,4}} {{1},{2},{3},{2,3}} {{1},{2},{3},{4,5}} {{1},{2},{4},{3,4}} {{1},{2},{3},{4},{5}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))} R(q, n)={vector(n, t, x*Ser(K(q, t, n)/t))} a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(u=R(q,n)); s+=permcount(q)*polcoef(exp(sum(t=1, n, u[t]-subst(u[t],x,x^2), O(x*x^n))) - exp(sum(t=1, n\2, x^t*u[t] - subst(x^t*u[t],x,x^2), O(x*x^n)))*(1+x), n)); s/n!)} \\ Andrew Howroyd, May 30 2023
Extensions
Terms a(11) and beyond from Andrew Howroyd, May 30 2023
Comments