cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A319759 Number of non-isomorphic intersecting multiset partitions of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 2, 13, 49, 199
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset partition is intersecting if no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 1 through a(8) = 13 multiset partitions:
6: {{1,2},{1,3},{2,3}}
7: {{1,2},{1,3},{2,3,3}}
   {{1,3},{1,4},{2,3,4}}
8: {{1,2},{1,3},{2,2,3,3}}
   {{1,2},{1,3},{2,3,3,3}}
   {{1,2},{1,3},{2,3,4,4}}
   {{1,2},{1,3,3},{2,3,3}}
   {{1,2},{1,3,4},{2,3,4}}
   {{1,3},{1,4},{2,3,4,4}}
   {{1,3},{1,1,2},{2,3,3}}
   {{1,3},{1,2,2},{2,3,3}}
   {{1,4},{1,5},{2,3,4,5}}
   {{2,3},{1,2,4},{3,4,4}}
   {{2,4},{1,2,3},{3,4,4}}
   {{2,4},{1,2,5},{3,4,5}}
   {{1,2},{1,3},{2,3},{2,3}}
		

Crossrefs

A326912 BII-numbers of pairwise intersecting set-systems with empty intersection.

Original entry on oeis.org

0, 52, 116, 772, 832, 836, 1072, 1076, 1136, 1140, 1796, 1856, 1860, 2320, 2368, 2384, 2592, 2624, 2656, 2880, 3088, 3104, 3120, 3136, 3152, 3168, 3184, 3344, 3392, 3408, 3616, 3648, 3680, 3904, 4132, 4148, 4196, 4212, 4612, 4640, 4644, 4672, 4676, 4704, 4708
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all pairwise intersecting set-systems with empty intersection, together with their BII-numbers, begins:
     0: {}
    52: {{1,2},{1,3},{2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
   772: {{1,2},{1,4},{2,4}}
   832: {{1,2,3},{1,4},{2,4}}
   836: {{1,2},{1,2,3},{1,4},{2,4}}
  1072: {{1,3},{2,3},{1,2,4}}
  1076: {{1,2},{1,3},{2,3},{1,2,4}}
  1136: {{1,3},{2,3},{1,2,3},{1,2,4}}
  1140: {{1,2},{1,3},{2,3},{1,2,3},{1,2,4}}
  1796: {{1,2},{1,4},{2,4},{1,2,4}}
  1856: {{1,2,3},{1,4},{2,4},{1,2,4}}
  1860: {{1,2},{1,2,3},{1,4},{2,4},{1,2,4}}
  2320: {{1,3},{1,4},{3,4}}
  2368: {{1,2,3},{1,4},{3,4}}
  2384: {{1,3},{1,2,3},{1,4},{3,4}}
  2592: {{2,3},{2,4},{3,4}}
  2624: {{1,2,3},{2,4},{3,4}}
  2656: {{2,3},{1,2,3},{2,4},{3,4}}
  2880: {{1,2,3},{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],(#==0||Intersection@@bpe/@bpe[#]=={})&&stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&]

A319763 Number of non-isomorphic strict intersecting multiset partitions (sets of multisets) of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 2, 12, 46, 181
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset partition is intersecting if no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 1 through a(8) = 12 multiset partitions:
6: {{1,2},{1,3},{2,3}}
7: {{1,2},{1,3},{2,3,3}}
   {{1,3},{1,4},{2,3,4}}
8: {{1,2},{1,3},{2,2,3,3}}
   {{1,2},{1,3},{2,3,3,3}}
   {{1,2},{1,3},{2,3,4,4}}
   {{1,2},{1,3,3},{2,3,3}}
   {{1,2},{1,3,4},{2,3,4}}
   {{1,3},{1,4},{2,3,4,4}}
   {{1,3},{1,1,2},{2,3,3}}
   {{1,3},{1,2,2},{2,3,3}}
   {{1,4},{1,5},{2,3,4,5}}
   {{2,3},{1,2,4},{3,4,4}}
   {{2,4},{1,2,3},{3,4,4}}
   {{2,4},{1,2,5},{3,4,5}}
		

Crossrefs

A319764 Number of non-isomorphic intersecting set systems of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 3, 8, 18
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets. It is intersecting if no two parts are disjoint. The weight of a set system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 1 through a(9) = 8 set systems:
6: {{1,2},{1,3},{2,3}}
7: {{1,3},{1,4},{2,3,4}}
8: {{1,2},{1,3,4},{2,3,4}}
   {{1,4},{1,5},{2,3,4,5}}
   {{2,4},{1,2,5},{3,4,5}}
9: {{1,3},{1,4,5},{2,3,4,5}}
   {{1,5},{1,6},{2,3,4,5,6}}
   {{2,5},{1,2,6},{3,4,5,6}}
   {{1,2,3},{2,4,5},{3,4,5}}
   {{1,3,5},{2,3,6},{4,5,6}}
   {{1,2},{1,3},{1,4},{2,3,4}}
   {{1,2},{1,3},{2,3},{1,2,3}}
   {{1,3},{1,4},{3,4},{2,3,4}}
		

Crossrefs

Showing 1-4 of 4 results.