cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A319748 Number of non-isomorphic set multipartitions (multisets of sets) of weight n with empty intersection.

Original entry on oeis.org

1, 0, 1, 3, 10, 25, 72, 182, 502, 1332, 3720, 10380, 30142, 88842, 270569, 842957, 2703060, 8885029, 29990388, 103743388, 367811233, 1334925589, 4957151327, 18817501736, 72972267232, 288863499000, 1166486601571, 4802115258807, 20141268290050, 86017885573548, 373852868791639
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The weight of a set multipartition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(4) = 10 set multipartitions:
  {{1},{2}}   {{1},{2,3}}     {{1},{2,3,4}}
             {{1},{2},{2}}    {{1,2},{3,4}}
             {{1},{2},{3}}   {{1},{1},{2,3}}
                             {{1},{2},{1,2}}
                             {{1},{2},{3,4}}
                             {{1},{3},{2,3}}
                            {{1},{1},{2},{2}}
                            {{1},{2},{2},{2}}
                            {{1},{2},{3},{3}}
                            {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    R(q, n)={vector(n, t, x*Ser(K(q, t, n)/t))}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(u=R(q,n)); s+=permcount(q)*polcoef(exp(sum(t=1, n, u[t], O(x*x^n))) - exp(sum(t=1, n\2, x^t*u[t], O(x*x^n)))/(1-x), n)); s/n!)} \\ Andrew Howroyd, May 30 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 30 2023

A319790 Number of non-isomorphic connected multiset partitions of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 32, 134, 588, 2335, 9335, 36506, 144263, 571238, 2291894, 9300462, 38303796, 160062325, 679333926, 2927951665, 12817221628, 56974693933, 257132512297, 1177882648846, 5475237760563, 25818721638720, 123473772356785, 598687942799298, 2942344764127039
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(4) = 1 through a(5) = 5 connected multiset partitions:
4:  {{1},{2},{1,2}}
5: {{1},{2},{1,2,2}}
   {{1},{1,2},{2,2}}
   {{2},{3},{1,2,3}}
   {{2},{1,3},{2,3}}
  {{1},{2},{2},{1,2}}
		

Crossrefs

Formula

a(n) = A007718(n) - A007716(n) + A317757(n). - Andrew Howroyd, May 31 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 31 2023

A319751 Number of non-isomorphic set systems of weight n with empty intersection.

Original entry on oeis.org

1, 0, 1, 2, 6, 13, 35, 83, 217, 556, 1504, 4103, 11715, 34137, 103155, 320217, 1025757, 3376889, 11436712, 39758152, 141817521, 518322115, 1939518461, 7422543892, 29028055198, 115908161428, 472185530376, 1961087909565, 8298093611774, 35750704171225, 156734314212418
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets. Its weight is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 set systems:
2: {{1},{2}}
3: {{1},{2,3}}
   {{1},{2},{3}}
4: {{1},{2,3,4}}
   {{1,2},{3,4}}
   {{1},{2},{1,2}}
   {{1},{2},{3,4}}
   {{1},{3},{2,3}}
   {{1},{2},{3},{4}}
5: {{1},{2,3,4,5}}
   {{1,2},{3,4,5}}
   {{1},{2},{3,4,5}}
   {{1},{4},{2,3,4}}
   {{1},{2,3},{4,5}}
   {{1},{2,4},{3,4}}
   {{2},{3},{1,2,3}}
   {{2},{1,3},{2,3}}
   {{4},{1,2},{3,4}}
   {{1},{2},{3},{2,3}}
   {{1},{2},{3},{4,5}}
   {{1},{2},{4},{3,4}}
   {{1},{2},{3},{4},{5}}
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    R(q, n)={vector(n, t, x*Ser(K(q, t, n)/t))}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(u=R(q,n)); s+=permcount(q)*polcoef(exp(sum(t=1, n, u[t]-subst(u[t],x,x^2), O(x*x^n))) - exp(sum(t=1, n\2, x^t*u[t] - subst(x^t*u[t],x,x^2), O(x*x^n)))*(1+x), n)); s/n!)} \\ Andrew Howroyd, May 30 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 30 2023

A319793 Number of non-isomorphic connected strict multiset partitions (sets of multisets) of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 1, 4, 24, 96, 412, 1607, 6348, 24580, 96334, 378569, 1508220, 6079720, 24879878, 103335386, 436032901, 1869019800, 8139613977, 36008825317, 161794412893, 738167013847, 3418757243139, 16068569129711, 76622168743677, 370571105669576, 1817199912384794
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(4) = 1 through a(5) = 4 multiset partitions:
4:  {{1},{2},{1,2}}
5: {{1},{2},{1,2,2}}
   {{1},{1,2},{2,2}}
   {{2},{3},{1,2,3}}
   {{2},{1,3},{2,3}}
		

Crossrefs

Formula

a(n) = A319557(n) - A316980(n) + A319077(n). - Andrew Howroyd, May 31 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 31 2023
Showing 1-4 of 4 results.