A319810 Number of fully periodic integer partitions of n.
1, 2, 2, 3, 2, 5, 2, 5, 4, 6, 2, 11, 2, 8, 7, 11, 2, 17, 2, 18, 9, 15, 2, 32, 5, 22, 12, 34, 2, 54, 2, 49, 16, 51, 10, 94, 2, 77, 23, 112, 2, 152, 2, 148, 47, 165, 2, 258, 7, 247, 52, 286, 2, 400, 17, 402, 78, 439, 2, 657, 2, 594, 131, 711, 24
Offset: 1
Keywords
Examples
The a(12) = 11 fully periodic integer partitions: (12) (6,6) (4,4,4) (5,5,1,1) (4,4,2,2) (3,3,3,3) (3,3,3,1,1,1) (3,3,2,2,1,1) (2,2,2,2,2,2) (2,2,2,2,1,1,1,1) (1,1,1,1,1,1,1,1,1,1,1,1) Periodic partitions missing from this list are: (4,4,1,1,1,1) (3,3,1,1,1,1,1,1) (2,2,2,1,1,1,1,1,1) (2,2,1,1,1,1,1,1,1,1) The first non-uniform fully periodic partition is (4,4,3,3,2,2,2,2,1,1,1,1). The first periodic integer partition that is not fully periodic is (2,2,1,1,1,1).
Crossrefs
Programs
-
Mathematica
totperQ[m_]:=Or[Length[m]==1,And[GCD@@Length/@Split[Sort[m]]>1,totperQ[Sort[Length/@Split[Sort[m]]]]]]; Table[Length[Select[IntegerPartitions[n],totperQ]],{n,30}]
Comments