cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319814 Number of partitions of n into exactly four positive triangular numbers.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 2, 1, 3, 2, 4, 2, 2, 3, 3, 3, 2, 4, 3, 5, 3, 2, 5, 4, 4, 3, 5, 4, 4, 5, 4, 5, 5, 4, 6, 5, 5, 6, 5, 5, 6, 7, 3, 5, 9, 5, 7, 5, 8, 7, 7, 4, 7, 9, 7, 8, 5, 7, 8, 10, 6, 6, 10, 7, 10, 7, 8, 9, 8, 8, 7, 13, 7, 10, 11
Offset: 4

Views

Author

Alois P. Heinz, Sep 28 2018

Keywords

Crossrefs

Column k=4 of A319797.
Cf. A000217.

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0,
          `if`(issqr(8*n+1), n, h(n-1)))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0), `if`(
          k>n or i*k b(n, h(n), 4):
    seq(a(n), n=4..120);
  • Mathematica
    h[n_] := h[n] = If[n<1, 0, If[IntegerQ@Sqrt[8n + 1], n, h[n - 1]]];
    b[n_, i_, k_] := b[n, i, k] = If[n==0, If[k==0, 1, 0], If[k>n || i k < n, 0, b[n, h[i - 1], k] + b[n - i, h[Min[n - i, i]], k - 1]]];
    a[n_] := b[n, h[n], 4];
    a /@ Range[4, 120] (* Jean-François Alcover, Dec 13 2020, after Alois P. Heinz *)

Formula

a(n) = [x^n y^4] 1/Product_{j>=1} (1-y*x^A000217(j)).