A319851 Welschinger invariant for the number of real plane curves of degree n passing through 3*n-1 general points.
1, 1, 8, 240, 18264, 2845440, 792731520, 359935488000, 248962406889600
Offset: 1
Links
- Aubin Arroyo, Erwan Brugallé and Lucía López de Medrano, Recursive formulas for Welschinger invariants of the projective plane, International Mathematics Research Notices, 2011, 1107-1134; arXiv:0809.1541 [math.AG], 2008-2010. See numbers W2(n,0) in Section 7.3.
- Erwan Brugallé, Géométries énumératives complexe, réelle et tropicale, Journées mathématiques X-UPS, École polytechnique, 2008. See Table 3, p. 54.
- Antoine Chambert-Loir, Quand la géométrie devient tropicale, Pour la Science, No 492, October 2018 (in French).
- I. Itenberg, V. Kharlamov & E. Shustin, Welschinger invariant and enumeration of real rational curves, Int. Math. Res. Not. (2003), no. 49, pp. 2639-2653.
- I. Itenberg, V. Kharlamov & E. Shustin, Welschinger invariant and enumeration of real rational curves, arXiv:math/0303378 [math.AG], 2003.
- I. Itenberg, V. Kharlamov & E. Shustin, Logarithmic equivalence of the Welschinger and the Gromov-Witten invariants, Uspekhi Mat. Nauk 59 (2004), no. 6(360), pp. 85-110.
- I. Itenberg, V. Kharlamov & E. Shustin, Logarithmic equivalence of the Welschinger and the Gromov-Witten invariants, arXiv:math/0407188 [math.AG], 2004.
Extensions
a(8)-a(9) added from Arroyo et al. and name clarified by Andrey Zabolotskiy, May 03 2022, based on contribution by Michel Marcus
Comments